No Arabic abstract
Photonic devices play an increasingly important role in advancing physics and engineering, and while improvements in nanofabrication and computational methods have driven dramatic progress in expanding the range of achievable optical characteristics, they have also greatly increased design complexity. These developments have led to heightened relevance for the study of fundamental limits on optical response. Here, we review recent progress in our understanding of these limits with special focus on an emerging theoretical framework that combines computational optimization with conservation laws to yield physical limits capturing all relevant wave effects. Results pertaining to canonical electromagnetic problems such as thermal emission, scattering cross sections, Purcell enhancement, and power routing are presented. Finally, we identify areas for additional research, including conceptual extensions and efficient numerical schemes for handling large-scale problems.
Decomposing the field scattered by an object into vector spherical harmonics (VSH) is the prime task when discussing its optical properties on more analytical grounds. Thus far, it was frequently required in the decomposition that the scattered field is available on a spherical surface enclosing the scatterer; being with that adapted to the spatial dependency of the VSHs but being rather incompatible with many numerical solvers. To mitigate this problem, we propose an orthogonal expression for the decomposition that holds for any surface that encloses the scatterer, independently of its shape. We also show that the orthogonal relations remain unchanged when the radiative VSH used for the expansion of the scattered field are substituted by the VSH used for the expansion of the illumination as test functions. This is a key factor for the numerical stability of our decomposition. As example, we use a finite-element based solver to compute the multipole response of a nanorod illuminated by a plane wave and study its convergence properties.
At visible and infrared frequencies, metals show tantalizing promise for strong subwavelength resonances, but material loss typically dampens the response. We derive fundamental limits to the optical response of absorptive systems, bounding the largest enhancements possible given intrinsic material losses. Through basic conservation-of-energy principles, we derive geometry-independent limits to per-volume absorption and scattering rates, and to local-density-of-states enhancements that represent the power radiated or expended by a dipole near a material body. We provide examples of structures that approach our absorption and scattering limits at any frequency, by contrast, we find that common antenna structures fall far short of our radiative LDOS bounds, suggesting the possibility for significant further improvement. Underlying the limits is a simple metric, $|chi|^2 / operatorname{Im} chi$ for a material with susceptibility $chi$, that enables broad technological evaluation of lossy materials across optical frequencies.
The finite-element method is a preferred numerical method when electromagnetic fields at high accuracy are to be computed in nano-optics design. Here, we demonstrate a finite-element method using hp-adaptivity on tetrahedral meshes for computation of electromagnetic fields in a device with rough textures. The method allows for efficient computations on meshes with strong variations in element sizes. This enables to use precise geometry resolution of the rough textures. Convergence to highly accurate results is observed.
2D materials provide a platform for strong light--matter interactions, creating wide-ranging design opportunities via new-material discoveries and new methods for geometrical structuring. We derive general upper bounds to the strength of such light--matter interactions, given only the optical conductivity of the material, including spatial nonlocality, and otherwise independent of shape and configuration. Our material figure of merit shows that highly doped graphene is an optimal material at infrared frequencies, whereas single-atomic-layer silver is optimal in the visible. For quantities ranging from absorption and scattering to near-field spontaneous-emission enhancements and radiative heat transfer, we consider canonical geometrical structures and show that in certain cases the bounds can be approached, while in others there may be significant opportunity for design improvement. The bounds can encourage systematic improvements in the design of ultrathin broadband absorbers, 2D antennas, and near-field energy harvesters.
Electromagnetic waves carry an infinite number of conserved quantities. We give a simple explanation of this fact, which also shows how to write down conserved quantities at will and calculate their associated symmetry transformations. This framework is then used to discuss decompositions of optical angular momentum, and to prove that magnetic helicity is conserved for beams and pulses. Finally we describe an infinite set of electromagnetic conserved quantities that corresponds to the Virasoro generators of conformal field theories. In the quantum case the Virasoro generators acquire a central charge in their algebra, an example of a quantum anomaly.