Do you want to publish a course? Click here

Hint of a truncated primordial spectrum from the CMB large-scale anomalies

72   0   0.0 ( 0 )
 Added by Fulvio Melia
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Several satellite missions have uncovered a series of potential anomalies in the fluctuation spectrum of the cosmic microwave background temperature, including: (1) an unexpectedly low level of correlation at large angles, manifested via the angular correlation function, C(theta); and (2) missing power in the low multipole moments of the angular power spectrum, C_ell. Their origin is still debated, however, due to a persistent lack of clarity concerning the seeding of quantum fluctuations in the early Universe. A likely explanation for the first of these appears to be a cutoff, k_min=(3.14 +/- 0.36) x 10^{-4} Mpc^{-1}, in the primordial power spectrum, P(k). Our goal in this paper is twofold: (1) we examine whether the same k_min can also self-consistently explain the missing power at large angles, and (2) we confirm that the of this cutoff in P(k) does not adversely affect the remarkable consistency between the prediction of Planck-LCDM and the Planck measurements at ell > 30. We use the publicly available code CAMB to calculate the angular power spectrum, based on a line-of-sight approach. The code is modified slightly to include the additional parameter (i.e., k_min) characterizing the primordial power spectrum. In addition to this cutoff, the code optimizes all of the usual standard-model parameters. In fitting the angular power spectrum, we find an optimized cutoff, k_min = 2.04^{+1.4}_{-0.79} x 10^{-4} Mpc^{-1}, when using the whole range of ells, and k_min=3.3^{+1.7}_{-1.3} x 10^{-4} Mpc^{-1}, when fitting only the range ell < 30, where the Sachs-Wolfe effect is dominant. These are fully consistent with the value inferred from C(theta), suggesting that both of these large-angle anomalies may be due to the same truncation in P(k).



rate research

Read More

Cosmic microwave background measurements show an agreement with the concordance cosmology model except for a few notable anomalies: Power Suppression, the lack of large scale power in the temperature data compared to what is expected in the concordance model, and Cosmic Hemispherical Asymmetry, a dipolar breakdown of statistical isotropy. An expansion of the CMB covariance in Bipolar Spherical Harmonics naturally parametrizes both these large-scale anomalies, allowing us to perform an exhaustive, fully Bayesian joint analysis of the power spectrum and violations of statistical isotropy up to the dipole level. Our analysis sheds light on the scale dependence of the Cosmic Hemispherical Asymmetry. Assuming a scale-dependent dipole modulation model with a two-parameter power law form, we explore the posterior pdf of amplitude $A(l = 16)$ and the power law index $alpha$ and find the maximum a posteriori values $A_*(l = 16) = 0.064 pm 0.022$ and $alpha_* = -0.92 pm 0.22$. The maximum a posteriori direction associated with the Cosmic Hemispherical Asymmetry is $(l,b) = (247.8^o, -19.6^o)$ in Galactic coordinates, consistent with previous analyses. We evaluate the Bayes factor $B_{SI-DM}$ to compare the Cosmic Hemispherical Asymmetry model with the isotropic model. The data prefer but do not substantially favor the anisotropic model ($B_{SI-DM}=0.4$). We consider several priors and find that this evidence ratio is robust to prior choice. The large-scale power suppression does not soften when jointly inferring both the isotropic power spectrum and the parameters of the asymmetric model, indicating no evidence that these anomalies are coupled.
Magnetic fields are everywhere in nature and they play an important role in every astronomical environment which involves the formation of plasma and currents. It is natural therefore to suppose that magnetic fields could be present in the turbulent high temperature environment of the big bang. Such a primordial magnetic field (PMF) would be expected to manifest itself in the cosmic microwave background (CMB) temperature and polarization anisotropies, and also in the formation of large- scale structure. In this review we summarize the theoretical framework which we have developed to calculate the PMF power spectrum to high precision. Using this formulation, we summarize calculations of the effects of a PMF which take accurate quantitative account of the time evolution of the cut off scale. We review the constructed numerical program, which is without approximation, and an improvement over the approach used in a number of previous works for studying the effect of the PMF on the cosmological perturbations. We demonstrate how the PMF is an important cosmological physical process on small scales. We also summarize the current constraints on the PMF amplitude $B_lambda$ and the power spectral index $n_B$ which have been deduced from the available CMB observational data by using our computational framework.
The residuals of the power spectra of WMAP and Plancks cosmic microwave background (CMB) anisotropies data are known to exhibit a few interesting anomalies at different scales with marginal statistical significance. Combining bottom-up and top-down model-building approaches and using a pipeline that efficiently compares model predictions with data, we construct a model of primordial standard clock that is able to link and address the anomalies at both the large and small scales. This model, and its variant, provide some of the best fits to the feature anomalies in CMB. According to Bayes evidences, these models are currently statistically indistinguishable from the Standard Model. We show that the difference between them will soon become statistically significant with various higher quality data on the CMB polarization. We demonstrate that such a model-building and data-analyses process may be used to uncover a portion of detailed evolutionary history of our universe during its primordial epoch.
The form of the primordial power spectrum (PPS) of cosmological scalar (matter density) perturbations is not yet constrained satisfactorily in spite of the tremendous amount of information from the Cosmic Microwave Background (CMB) data. While a smooth power-law-like form of the PPS is consistent with the CMB data, some PPS with small non-smooth features at large scales can also fit the CMB temperature and polarization data with similar statistical evidence. Future CMB surveys cannot help distinguish all such models due to the cosmic variance at large angular scales. In this paper, we study how well we can differentiate be- tween such featured forms of the PPS not otherwise distinguishable using CMB data. We ran 15 N-body DESI-like simulations of these models to explore this approach. Showing that statistics such as the halo mass function and the two-point correlation function are not able to distinguish these models in a DESI-like survey, we advocate to avoid reducing the dimensionality of the problem by demonstrating that the use of a simple three-dimensional count-in-cell density field can be much more effective for the purpose of model distinction.
362 - T. R. Seshadri 2009
Primordial magnetic fields lead to non-Gaussian signals in the Cosmic Microwave Background (CMB) even at the lowest order, as magnetic stresses, and the temperature anisotropy they induce, depend quadratically on the magnetic field. In contrast, CMB non-Gaussianity due to inflationary scalar perturbations arise only as a higher order effect. We propose here a novel probe of stochastic primordial magnetic fields that exploits the characteristic CMB non-Gaussianity that they induce. In particular, we compute the CMB bispectrum ($b_{l_{_1}l_{_2}l_{_3}}$) induced by stochastic primordial fields on large angular scales. We find a typical value of $l_1(l_1+1)l_3(l_3+1) b_{l_{_1}l_{_2}l_{_3}} sim 10^{-22}$, for magnetic fields of strength $B_0 sim 3$ nano Gauss and with a nearly scale invariant magnetic spectrum. Current observational limits on the bispectrum allow us to set upper limits on $B_0 sim 35$ nano Gauss, which can be improved by including other magnetically induced contributions to the bispectrum.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا