Do you want to publish a course? Click here

Primordial Standard Clock Models and CMB Residual Anomalies

155   0   0.0 ( 0 )
 Added by Matteo Braglia
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The residuals of the power spectra of WMAP and Plancks cosmic microwave background (CMB) anisotropies data are known to exhibit a few interesting anomalies at different scales with marginal statistical significance. Combining bottom-up and top-down model-building approaches and using a pipeline that efficiently compares model predictions with data, we construct a model of primordial standard clock that is able to link and address the anomalies at both the large and small scales. This model, and its variant, provide some of the best fits to the feature anomalies in CMB. According to Bayes evidences, these models are currently statistically indistinguishable from the Standard Model. We show that the difference between them will soon become statistically significant with various higher quality data on the CMB polarization. We demonstrate that such a model-building and data-analyses process may be used to uncover a portion of detailed evolutionary history of our universe during its primordial epoch.



rate research

Read More

Cosmic magnetic fields are observed to be coherent on large scales and could have a primordial origin. Non-Gaussian signals in the cosmic microwave background (CMB) are generated by primordial magnetic fields as the magnetic stresses and temperature anisotropy they induce depend quadratically on the magnetic field. We compute the CMB scalar trispectrum on large angular scales, for nearly scale-invariant magnetic fields, sourced via the Sachs-Wolfe effect. The trispectra induced by magnetic energy density and by magnetic scalar anisotropic stress are found to have typical magnitudes of approximately $10^{-29}$ and $10^{-19}$, respectively. The scalar anisotropic stress trispectrum is also calculated in the flat-sky approximation and yields a similar result. Observational limits on CMB non-Gaussianity from the Planck mission data allow us to set upper limits of $B_0 lesssim 0.6 $ nG on the present value of the primordial cosmic magnetic field. Considering the inflationary magnetic curvature mode in the trispectrum can further tighten the magnetic field upper limit to $B_0 lesssim 0.05 $ nG. These sub-nanoGauss constraints from the magnetic trispectrum are the most stringent limits so far on the strength of primordial magnetic fields, on megaparsec scales, significantly better than the limits obtained from the CMB bispectrum and the CMB power spectrum.
The merger rate of primordial black holes depends on their initial clustering. In the absence of primordial non-Gaussianity correlating short and large-scales, primordial black holes are distributed `a la Poisson at the time of their formation. However, primordial non-Gaussianity of the local-type may correlate primordial black holes on large-scales. We show that future experiments looking for CMB $mu$-distortion would test the hypothesis of initial primordial black hole clustering induced by local non-Gaussianity, while existing limits already show that significant non-Gaussianity is necessary to induce primordial black hole clustering.
Magnetic fields are everywhere in nature and they play an important role in every astronomical environment which involves the formation of plasma and currents. It is natural therefore to suppose that magnetic fields could be present in the turbulent high temperature environment of the big bang. Such a primordial magnetic field (PMF) would be expected to manifest itself in the cosmic microwave background (CMB) temperature and polarization anisotropies, and also in the formation of large- scale structure. In this review we summarize the theoretical framework which we have developed to calculate the PMF power spectrum to high precision. Using this formulation, we summarize calculations of the effects of a PMF which take accurate quantitative account of the time evolution of the cut off scale. We review the constructed numerical program, which is without approximation, and an improvement over the approach used in a number of previous works for studying the effect of the PMF on the cosmological perturbations. We demonstrate how the PMF is an important cosmological physical process on small scales. We also summarize the current constraints on the PMF amplitude $B_lambda$ and the power spectral index $n_B$ which have been deduced from the available CMB observational data by using our computational framework.
The dark matter (DM) can consist of the primordial black holes (PBHs) in addition to the conventional weakly interacting massive particles (WIMPs). The Poisson fluctuations of the PBH number density produce the isocurvature perturbations which can dominate the matter power spectrum at small scales and enhance the early structure formation. We study how the WIMP annihilation from those early formed structures can affect the CMB (in particular the E-mode polarization anisotropies and $y$-type spectral distortions) and global 21cm signals. Our studies would be of particular interest for the light (sub-GeV) WIMP scenarios which have been less explored compared with the mixed DM scenarios consisting of PBHs and heavy ($gtrsim 1$ GeV) WIMPs. For instance, for the self-annihilating DM mass $m_{chi}=1$ MeV and the thermally averaged annihilation cross section $langle sigma v rangle sim 10^{-30} rm cm^3/s$, the latest Planck CMB data requires the PBH fraction with respect to the whole DM to be at most ${cal O}(10^{-3})$ for the sub-solar mass PBHs and an even tighter bound (by a factor $sim 5$) can be obtained from the global 21-cm measurements.
Cosmic Microwave Background (CMB) polarization B-modes induced by Faraday Rotation (FR) can provide a distinctive signature of primordial magnetic fields because of their characteristic frequency dependence and because they are only weakly damped on small scales. FR also leads to mode-coupling correlations between the E and B type polarization, and between the temperature and the B-mode. These additional correlations can further help distinguish magnetic fields from other sources of B-modes. We review the FR induced CMB signatures and present the constraints on primordial magnetism that can be expected from upcoming CMB experiments. Our results suggest that FR of CMB will be a promising probe of primordial magnetic fields.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا