Do you want to publish a course? Click here

Modeling Concentrated Cross-Attention for Neural Machine Translation with Gaussian Mixture Model

229   0   0.0 ( 0 )
 Added by Shaolei Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Cross-attention is an important component of neural machine translation (NMT), which is always realized by dot-product attention in previous methods. However, dot-product attention only considers the pair-wise correlation between words, resulting in dispersion when dealing with long sentences and neglect of source neighboring relationships. Inspired by linguistics, the above issues are caused by ignoring a type of cross-attention, called concentrated attention, which focuses on several central words and then spreads around them. In this work, we apply Gaussian Mixture Model (GMM) to model the concentrated attention in cross-attention. Experiments and analyses we conducted on three datasets show that the proposed method outperforms the baseline and has significant improvement on alignment quality, N-gram accuracy, and long sentence translation.



rate research

Read More

Knowing which words have been attended to in previous time steps while generating a translation is a rich source of information for predicting what words will be attended to in the future. We improve upon the attention model of Bahdanau et al. (2014) by explicitly modeling the relationship between previous and subsequent attention levels for each word using one recurrent network per input word. This architecture easily captures informative features, such as fertility and regularities in relative distortion. In experiments, we show our parameterization of attention improves translation quality.
177 - Deng Cai , Yan Wang , Huayang Li 2021
Prior work has proved that Translation memory (TM) can boost the performance of Neural Machine Translation (NMT). In contrast to existing work that uses bilingual corpus as TM and employs source-side similarity search for memory retrieval, we propose a new framework that uses monolingual memory and performs learnable memory retrieval in a cross-lingual manner. Our framework has unique advantages. First, the cross-lingual memory retriever allows abundant monolingual data to be TM. Second, the memory retriever and NMT model can be jointly optimized for the ultimate translation goal. Experiments show that the proposed method obtains substantial improvements. Remarkably, it even outperforms strong TM-augmented NMT baselines using bilingual TM. Owning to the ability to leverage monolingual data, our model also demonstrates effectiveness in low-resource and domain adaptation scenarios.
128 - Hao Xiong , Zhongjun He , Hua Wu 2018
Discourse coherence plays an important role in the translation of one text. However, the previous reported models most focus on improving performance over individual sentence while ignoring cross-sentence links and dependencies, which affects the coherence of the text. In this paper, we propose to use discourse context and reward to refine the translation quality from the discourse perspective. In particular, we generate the translation of individual sentences at first. Next, we deliberate the preliminary produced translations, and train the model to learn the policy that produces discourse coherent text by a reward teacher. Practical results on multiple discourse test datasets indicate that our model significantly improves the translation quality over the state-of-the-art baseline system by +1.23 BLEU score. Moreover, our model generates more discourse coherent text and obtains +2.2 BLEU improvements when evaluated by discourse metrics.
Existing neural machine translation (NMT) systems utilize sequence-to-sequence neural networks to generate target translation word by word, and then make the generated word at each time-step and the counterpart in the references as consistent as possible. However, the trained translation model tends to focus on ensuring the accuracy of the generated target word at the current time-step and does not consider its future cost which means the expected cost of generating the subsequent target translation (i.e., the next target word). To respond to this issue, we propose a simple and effective method to model the future cost of each target word for NMT systems. In detail, a time-dependent future cost is estimated based on the current generated target word and its contextual information to boost the training of the NMT model. Furthermore, the learned future context representation at the current time-step is used to help the generation of the next target word in the decoding. Experimental results on three widely-used translation datasets, including the WMT14 German-to-English, WMT14 English-to-French, and WMT17 Chinese-to-English, show that the proposed approach achieves significant improvements over strong Transformer-based NMT baseline.
Although attention-based Neural Machine Translation (NMT) has achieved remarkable progress in recent years, it still suffers from issues of repeating and dropping translations. To alleviate these issues, we propose a novel key-value memory-augmented attention model for NMT, called KVMEMATT. Specifically, we maintain a timely updated keymemory to keep track of attention history and a fixed value-memory to store the representation of source sentence throughout the whole translation process. Via nontrivial transformations and iterative interactions between the two memories, the decoder focuses on more appropriate source word(s) for predicting the next target word at each decoding step, therefore can improve the adequacy of translations. Experimental results on Chinese=>English and WMT17 German<=>English translation tasks demonstrate the superiority of the proposed model.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا