Do you want to publish a course? Click here

Space Meets Time: Local Spacetime Neural Network For Traffic Flow Forecasting

116   0   0.0 ( 0 )
 Added by Song Yang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Traffic flow forecasting is a crucial task in urban computing. The challenge arises as traffic flows often exhibit intrinsic and latent spatio-temporal correlations that cannot be identified by extracting the spatial and temporal patterns of traffic data separately. We argue that such correlations are universal and play a pivotal role in traffic flow. We put forward spacetime interval learning as a paradigm to explicitly capture these correlations through a unified analysis of both spatial and temporal features. Unlike the state-of-the-art methods, which are restricted to a particular road network, we model the universal spatio-temporal correlations that are transferable from cities to cities. To this end, we propose a new spacetime interval learning framework that constructs a local-spacetime context of a traffic sensor comprising the data from its neighbors within close time points. Based on this idea, we introduce spacetime neural network (STNN), which employs novel spacetime convolution and attention mechanism to learn the universal spatio-temporal correlations. The proposed STNN captures local traffic patterns, which does not depend on a specific network structure. As a result, a trained STNN model can be applied on any unseen traffic networks. We evaluate the proposed STNN on two public real-world traffic datasets and a simulated dataset on dynamic networks. The experiment results show that STNN not only improves prediction accuracy by 15% over state-of-the-art methods, but is also effective in handling the case when the traffic network undergoes dynamic changes as well as the superior generalization capability.



rate research

Read More

Traffic forecasting is a particularly challenging application of spatiotemporal forecasting, due to the time-varying traffic patterns and the complicated spatial dependencies on road networks. To address this challenge, we learn the traffic network as a graph and propose a novel deep learning framework, Traffic Graph Convolutional Long Short-Term Memory Neural Network (TGC-LSTM), to learn the interactions between roadways in the traffic network and forecast the network-wide traffic state. We define the traffic graph convolution based on the physical network topology. The relationship between the proposed traffic graph convolution and the spectral graph convolution is also discussed. An L1-norm on graph convolution weights and an L2-norm on graph convolution features are added to the models loss function to enhance the interpretability of the proposed model. Experimental results show that the proposed model outperforms baseline methods on two real-world traffic state datasets. The visualization of the graph convolution weights indicates that the proposed framework can recognize the most influential road segments in real-world traffic networks.
Traffic forecasting is a core element of intelligent traffic monitoring system. Approaches based on graph neural networks have been widely used in this task to effectively capture spatial and temporal dependencies of road networks. However, these approaches can not effectively define the complicated network topology. Besides, their cascade network structures have limitations in transmitting distinct features in the time and space dimensions. In this paper, we propose a Multi-adaptive Spatiotemporal-flow Graph Neural Network (MAF-GNN) for traffic speed forecasting. MAF-GNN introduces an effective Multi-adaptive Adjacency Matrices Mechanism to capture multiple latent spatial dependencies between traffic nodes. Additionally, we propose Spatiotemporal-flow Modules aiming to further enhance feature propagation in both time and space dimensions. MAF-GNN achieves better performance than other models on two real-world datasets of public traffic network, METR-LA and PeMS-Bay, demonstrating the effectiveness of the proposed approach.
146 - Samit Bhanja , Abhishek Das 2018
For the last few years it has been observed that the Deep Neural Networks (DNNs) has achieved an excellent success in image classification, speech recognition. But DNNs are suffer great deal of challenges for time series forecasting because most of the time series data are nonlinear in nature and highly dynamic in behaviour. The time series forecasting has a great impact on our socio-economic environment. Hence, to deal with these challenges its need to be redefined the DNN model and keeping this in mind, data pre-processing, network architecture and network parameters are need to be consider before feeding the data into DNN models. Data normalization is the basic data pre-processing technique form which learning is to be done. The effectiveness of time series forecasting is heavily depend on the data normalization technique. In this paper, different normalization methods are used on time series data before feeding the data into the DNN model and we try to find out the impact of each normalization technique on DNN to forecast the time series. Here the Deep Recurrent Neural Network (DRNN) is used to predict the closing index of Bombay Stock Exchange (BSE) and New York Stock Exchange (NYSE) by using BSE and NYSE time series data.
Research in deep learning models to forecast traffic intensities has gained great attention in recent years due to their capability to capture the complex spatio-temporal relationships within the traffic data. However, most state-of-the-art approaches have designed spatial-only (e.g. Graph Neural Networks) and temporal-only (e.g. Recurrent Neural Networks) modules to separately extract spatial and temporal features. However, we argue that it is less effective to extract the complex spatio-temporal relationship with such factorized modules. Besides, most existing works predict the traffic intensity of a particular time interval only based on the traffic data of the previous one hour of that day. And thereby ignores the repetitive daily/weekly pattern that may exist in the last hour of data. Therefore, we propose a Unified Spatio-Temporal Graph Convolution Network (USTGCN) for traffic forecasting that performs both spatial and temporal aggregation through direct information propagation across different timestamp nodes with the help of spectral graph convolution on a spatio-temporal graph. Furthermore, it captures historical daily patterns in previous days and current-day patterns in current-day traffic data. Finally, we validate our works effectiveness through experimental analysis, which shows that our model USTGCN can outperform state-of-the-art performances in three popular benchmark datasets from the Performance Measurement System (PeMS). Moreover, the training time is reduced significantly with our proposed USTGCN model.
158 - Xu Chen , Yuanxing Zhang , Lun Du 2020
Traffic flow forecasting is of great significance for improving the efficiency of transportation systems and preventing emergencies. Due to the highly non-linearity and intricate evolutionary patterns of short-term and long-term traffic flow, existing methods often fail to take full advantage of spatial-temporal information, especially the various temporal patterns with different period shifting and the characteristics of road segments. Besides, the globality representing the absolute value of traffic status indicators and the locality representing the relative value have not been considered simultaneously. This paper proposes a neural network model that focuses on the globality and locality of traffic networks as well as the temporal patterns of traffic data. The cycle-based dilated deformable convolution block is designed to capture different time-varying trends on each node accurately. Our model can extract both global and local spatial information since we combine two graph convolutional network methods to learn the representations of nodes and edges. Experiments on two real-world datasets show that the model can scrutinize the spatial-temporal correlation of traffic data, and its performance is better than the compared state-of-the-art methods. Further analysis indicates that the locality and globality of the traffic networks are critical to traffic flow prediction and the proposed TSSRGCN model can adapt to the various temporal traffic patterns.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا