No Arabic abstract
Many NLG tasks such as summarization, dialogue response, or open domain question answering focus primarily on a source text in order to generate a target response. This standard approach falls short, however, when a users intent or context of work is not easily recoverable based solely on that source text -- a scenario that we argue is more of the rule than the exception. In this work, we argue that NLG systems in general should place a much higher level of emphasis on making use of additional context, and suggest that relevance (as used in Information Retrieval) be thought of as a crucial tool for designing user-oriented text-generating tasks. We further discuss possible harms and hazards around such personalization, and argue that value-sensitive design represents a crucial path forward through these challenges.
Newsletters have (re-) emerged as a powerful tool for publishers to engage with their readers directly and more effectively. Despite the diversity in their audiences, publishers newsletters remain largely a one-size-fits-all offering, which is suboptimal. In this paper, we present NU:BRIEF, a web application for publishers that enables them to personalize their newsletters without harvesting personal data. Personalized newsletters build a habit and become a great conversion tool for publishers, providing an alternative readers-generated revenue model to a declining ad/clickbait-centered business model.
Feature importance is commonly used to explain machine predictions. While feature importance can be derived from a machine learning model with a variety of methods, the consistency of feature importance via different methods remains understudied. In this work, we systematically compare feature importance from built-in mechanisms in a model such as attention values and post-hoc methods that approximate model behavior such as LIME. Using text classification as a testbed, we find that 1) no matter which method we use, important features from traditional models such as SVM and XGBoost are more similar with each other, than with deep learning models; 2) post-hoc methods tend to generate more similar important features for two models than built-in methods. We further demonstrate how such similarity varies across instances. Notably, important features do not always resemble each other better when two models agree on the predicted label than when they disagree.
The goal of serving and delighting customers in a personal and near human like manner is very high on automation agendas of most Enterprises. Last few years, have seen huge progress in Natural Language Processing domain which has led to deployments of conversational agents in many enterprises. Most of the current industrial deployments tend to use Monolithic Single Agent designs that model the entire knowledge and skill of the Domain. While this approach is one of the fastest to market, the monolithic design makes it very hard to scale beyond a point. There are also challenges in seamlessly leveraging many tools offered by sub fields of Natural Language Processing and Information Retrieval in a single solution. The sub fields that can be leveraged to provide relevant information are, Question and Answer system, Abstractive Summarization, Semantic Search, Knowledge Graph etc. Current deployments also tend to be very dependent on the underlying Conversational AI platform (open source or commercial) , which is a challenge as this is a fast evolving space and no one platform can be considered future proof even in medium term of 3-4 years. Lately,there is also work done to build multi agent solutions that tend to leverage a concept of master agent. While this has shown promise, this approach still makes the master agent in itself difficult to scale. To address these challenges, we introduce LPar, a distributed multi agent platform for large scale industrial deployment of polyglot, diverse and inter-operable agents. The asynchronous design of LPar supports dynamically expandable domain. We also introduce multiple strategies available in the LPar system to elect the most suitable agent to service a customer query.
AI systems that model and interact with users can update their models over time to reflect new information and changes in the environment. Although these updates may improve the overall performance of the AI system, they may actually hurt the performance with respect to individual users. Prior work has studied the trade-off between improving the systems accuracy following an update and the compatibility of the updated system with prior user experience. The more the model is forced to be compatible with a prior version, the higher loss in accuracy it will incur. In this paper, we show that by personalizing the loss function to specific users, in some cases it is possible to improve the compatibility-accuracy trade-off with respect to these users (increase the compatibility of the model while sacrificing less accuracy). We present experimental results indicating that this approach provides moderate improvements on average (around 20%) but large improvements for certain users (up to 300%).
Natural Language Generation (NLG) evaluation is a multifaceted task requiring assessment of multiple desirable criteria, e.g., fluency, coherency, coverage, relevance, adequacy, overall quality, etc. Across existing datasets for 6 NLG tasks, we observe that the human evaluation scores on these multiple criteria are often not correlated. For example, there is a very low correlation between human scores on fluency and data coverage for the task of structured data to text generation. This suggests that the current recipe of proposing new automatic evaluation metrics for NLG by showing that they correlate well with scores assigned by humans for a single criteria (overall quality) alone is inadequate. Indeed, our extensive study involving 25 automatic evaluation metrics across 6 different tasks and 18 different evaluation criteria shows that there is no single metric which correlates well with human scores on all desirable criteria, for most NLG tasks. Given this situation, we propose CheckLists for better design and evaluation of automatic metrics. We design templates which target a specific criteria (e.g., coverage) and perturb the output such that the quality gets affected only along this specific criteria (e.g., the coverage drops). We show that existing evaluation metrics are not robust against even such simple perturbations and disagree with scores assigned by humans to the perturbed output. The proposed templates thus allow for a fine-grained assessment of automatic evaluation metrics exposing their limitations and will facilitate better design, analysis and evaluation of such metrics.