Do you want to publish a course? Click here

NU:BRIEF -- A Privacy-aware Newsletter Personalization Engine for Publishers

214   0   0.0 ( 0 )
 Added by Ernesto Diaz-Aviles
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Newsletters have (re-) emerged as a powerful tool for publishers to engage with their readers directly and more effectively. Despite the diversity in their audiences, publishers newsletters remain largely a one-size-fits-all offering, which is suboptimal. In this paper, we present NU:BRIEF, a web application for publishers that enables them to personalize their newsletters without harvesting personal data. Personalized newsletters build a habit and become a great conversion tool for publishers, providing an alternative readers-generated revenue model to a declining ad/clickbait-centered business model.



rate research

Read More

66 - Shiran Dudy , Steven Bedrick , 2021
Many NLG tasks such as summarization, dialogue response, or open domain question answering focus primarily on a source text in order to generate a target response. This standard approach falls short, however, when a users intent or context of work is not easily recoverable based solely on that source text -- a scenario that we argue is more of the rule than the exception. In this work, we argue that NLG systems in general should place a much higher level of emphasis on making use of additional context, and suggest that relevance (as used in Information Retrieval) be thought of as a crucial tool for designing user-oriented text-generating tasks. We further discuss possible harms and hazards around such personalization, and argue that value-sensitive design represents a crucial path forward through these challenges.
Privacy-sensitive robotics is an emerging area of HRI research. Judgments about privacy would seem to be context-dependent, but none of the promising work on contextual frames has focused on privacy concerns. This work studies the impact of contextual frames on local users privacy judgments in a home telepresence setting. Our methodology consists of using an online questionnaire to collect responses to animated videos of a telepresence robot after framing people with an introductory paragraph. The results of four studies indicate a large effect of manipulating the robot operators identity between a stranger and a close confidante. It also appears that this framing effect persists throughout several videos. These findings serve to caution HRI researchers that a change in frame could cause their results to fail to replicate or generalize. We also recommend that robots be designed to encourage or discourage certain frames.
Mixed reality (MR) technology development is now gaining momentum due to advances in computer vision, sensor fusion, and realistic display technologies. With most of the research and development focused on delivering the promise of MR, there is only barely a few working on the privacy and security implications of this technology. This survey paper aims to put in to light these risks, and to look into the latest security and privacy work on MR. Specifically, we list and review the different protection approaches that have been proposed to ensure user and data security and privacy in MR. We extend the scope to include work on related technologies such as augmented reality (AR), virtual reality (VR), and human-computer interaction (HCI) as crucial components, if not the origins, of MR, as well as numerous related work from the larger area of mobile devices, wearables, and Internet-of-Things (IoT). We highlight the lack of investigation, implementation, and evaluation of data protection approaches in MR. Further challenges and directions on MR security and privacy are also discussed.
News recommendation and personalization is not a solved problem. People are growing concerned of their data being collected in excess in the name of personalization and the usage of it for purposes other than the ones they would think reasonable. Our experience in building personalization products for publishers while adhering to safeguard user privacy led us to investigate more on the user perspective of privacy and personalization. We conducted a survey to explore peoples experience with personalization and privacy and the viewpoints of different age groups. In this paper, we share our major findings with publishers and the community that can inform algorithmic design and implementation of the next generation of news recommender systems, which must put the human at its core and reach a balance between personalization experiences and privacy to reap the benefits of both.
79 - Adam J. Aviv , Ravi Kuber 2018
In this study, we examine the ways in which user attitudes towards privacy and security relating to mobile devices and the data stored thereon may impact the strength of unlock authentication, focusing on Androids graphical unlock patterns. We conducted an online study with Amazon Mechanical Turk ($N=750$) using self-reported unlock authentication choices, as well as Likert scale agreement/disagreement responses to a set of seven privacy/security prompts. We then analyzed the responses in multiple dimensions, including a straight average of the Likert responses as well as using Principle Component Analysis to expose latent factors. We found that responses to two of the seven questions proved relevant and significant. These two questions considered attitudes towards general concern for data stored on mobile devices, and attitudes towards concerns for unauthorized access by known actors. Unfortunately, larger conclusions cannot be drawn on the efficacy of the broader set of questions for exposing connections between unlock authentication strength (Pearson Rank $r=-0.08$, $p<0.1$). However, both of our factor solutions exposed differences in responses for demographics groups, including age, gender, and residence type. The findings of this study suggests that there is likely a link between perceptions of privacy/security on mobile devices and the perceived threats therein, but more research is needed, particularly on developing better survey and measurement techniques of privacy/security attitudes that relate to mobile devices specifically.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا