No Arabic abstract
Stabilizing legged robot locomotion on a dynamic rigid surface (DRS) (i.e., rigid surface that moves in the inertial frame) is a complex planning and control problem. The complexity arises due to the hybrid nonlinear walking dynamics subject to explicitly time-varying holonomic constraints caused by the surface movement. The first main contribution of this study is the extension of the capture point from walking on a static surface to locomotion on a DRS as well as the use of the resulting capture point for online motion planning. The second main contribution is a quadratic-programming (QP) based feedback controller design that explicitly considers the DRS movement. The stability and robustness of the proposed control approach are validated through simulations of a quadrupedal robot walking on a DRS with a rocking motion. The simulation results also demonstrate the improved walking performance compared with our previous approach based on offline planning and input-output linearizing control that does not explicitly guarantee the feasibility of ground contact constraints.
Real-world applications of bipedal robot walking require accurate, real-time state estimation. State estimation for locomotion over dynamic rigid surfaces (DRS), such as elevators, ships, public transport vehicles, and aircraft, remains under-explored, although state estimator designs for stationary rigid surfaces have been extensively studied. Addressing DRS locomotion in state estimation is a challenging problem mainly due to the nonlinear, hybrid nature of walking dynamics, the nonstationary surface-foot contact points, and hardware imperfections (e.g., limited availability, noise, and drift of onboard sensors). Towards solving this problem, we introduce an Invariant Extended Kalman Filter (InEKF) whose process and measurement models explicitly consider the DRS movement and hybrid walking behaviors while respectively satisfying the group-affine condition and invariant form. Due to these attractive properties, the estimation error convergence of the filter is provably guaranteed for hybrid DRS locomotion. The measurement model of the filter also exploits the holonomic constraint associated with the support-foot and surface orientations, under which the robots yaw angle in the world becomes observable in the presence of general DRS movement. Experimental results of bipedal walking on a rocking treadmill demonstrate the proposed filter ensures the rapid error convergence and observable base yaw angle.
Deep reinforcement learning (RL) uses model-free techniques to optimize task-specific control policies. Despite having emerged as a promising approach for complex problems, RL is still hard to use reliably for real-world applications. Apart from challenges such as precise reward function tuning, inaccurate sensing and actuation, and non-deterministic response, existing RL methods do not guarantee behavior within required safety constraints that are crucial for real robot scenarios. In this regard, we introduce guided constrained policy optimization (GCPO), an RL framework based upon our implementation of constrained proximal policy optimization (CPPO) for tracking base velocity commands while following the defined constraints. We also introduce schemes which encourage state recovery into constrained regions in case of constraint violations. We present experimental results of our training method and test it on the real ANYmal quadruped robot. We compare our approach against the unconstrained RL method and show that guided constrained RL offers faster convergence close to the desired optimum resulting in an optimal, yet physically feasible, robotic control behavior without the need for precise reward function tuning.
This paper aims to develop a hierarchical nonlinear control algorithm, based on model predictive control (MPC), quadratic programming (QP), and virtual constraints, to generate and stabilize locomotion patterns in a real-time manner for dynamical models of quadrupedal robots. The higher level of the proposed control scheme is developed based on an event-based MPC that computes the optimal center of mass (COM) trajectories for a reduced-order linear inverted pendulum (LIP) model subject to the feasibility of the net ground reaction force (GRF). The asymptotic stability of the desired target point for the reduced-order model under the event-based MPC approach is investigated. It is shown that the event-based nature of the proposed MPC approach can significantly reduce the computational burden associated with the real-time implementation of MPC techniques. To bridge the gap between reduced- and full-order models, QP-based virtual constraint controllers are developed at the lower level of the proposed control scheme to impose the full-order dynamics to track the optimal trajectories while having all individual GRFs in the friction cone. The analytical results of the paper are numerically confirmed on full-order simulation models of a 22 degree of freedom quadrupedal robot, Vision 60, that is augmented by a robotic manipulator. The paper numerically investigates the robustness of the proposed control algorithm against different contact models.
Legged robot locomotion requires the planning of stable reference trajectories, especially while traversing uneven terrain. The proposed trajectory optimization framework is capable of generating dynamically stable base and footstep trajectories for multiple steps. The locomotion task can be defined with contact locations, base motion or both, making the algorithm suitable for multiple scenarios (e.g., presence of moving obstacles). The planner uses a simplified momentum-based task space model for the robot dynamics, allowing computation times that are fast enough for online replanning.This fast planning capabilitiy also enables the quadruped to accommodate for drift and environmental changes. The algorithm is tested on simulation and a real robot across multiple scenarios, which includes uneven terrain, stairs and moving obstacles. The results show that the planner is capable of generating stable trajectories in the real robot even when a box of 15 cm height is placed in front of its path at the last moment.
In this paper, we aim to improve the robustness of dynamic quadrupedal locomotion through two aspects: 1) fast model predictive foothold planning, and 2) applying LQR to projected inverse dynamic control for robust motion tracking. In our proposed planning and control framework, foothold plans are updated at 400 Hz considering the current robot state and an LQR controller generates optimal feedback gains for motion tracking. The LQR optimal gain matrix with non-zero off-diagonal elements leverages the coupling of dynamics to compensate for system underactuation. Meanwhile, the projected inverse dynamic control complements the LQR to satisfy inequality constraints. In addition to these contributions, we show robustness of our control framework to unmodeled adaptive feet. Experiments on the quadruped ANYmal demonstrate the effectiveness of the proposed method for robust dynamic locomotion given external disturbances and environmental uncertainties.