Do you want to publish a course? Click here

First-Principles study of vibrational and non-collinear magnetic properties of the perovskite to post-perovskite pressure transition of NaMnF3

150   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We performed a first-principles study of the structural, vibrational, electronic and magnetic properties of NaMnF3 under applied isotropic pressure. We found that NaMnF3 undergoes a reconstructive phase transition at 8 GPa from the Pnma distorted perovskite structure toward the Cmcm post-perovskite structure. This is confirmed by a sudden change of the Mn-F-Mn bondings where the crystal goes from corner shared octahedra in the Pnma phase to edge shared octahedra in the Cmcm phase. The magnetic ordering also changes from a G-type antiferromagnetic ordering in the Pnma phase to a C-type antiferromagnetic ordering in the Cmcm phase. Interestingly, we found that the high-spin d-orbital filling is kept at the phase transition which has never been observed in the known magnetic post-perovskite structures. We also found a highly non-collinear magnetic ordering in the Cmcm post-perovskite phase that drives a large ferromagnetic canting of the spins. We discuss the validity of these results with respect to the U and J parameter of the GGA+U exchange correlation functional used in our study and conclude that large spin canting is a promising property of the post-perovskite fluoride compounds.



rate research

Read More

Rare-earth nickelates R$^{3+}$Ni$^{3+}$O$_3$ (R=Lu-Pr, Y) show a striking metal-insulator transition in their bulk phase whose temperature can be tuned by the rare-earth radius. These compounds are also the parent phases of the newly identified infinite layer RNiO2 superconductors. Although intensive theoretical works have been devoted to understand the origin of the metal-insulator transition in the bulk, there have only been a few studies on the role of hole and electron doping by rare-earth substitutions in RNiO$_3$ materials. Using first-principles calculations based on density functional theory (DFT) we study the effect of hole and electron doping in a prototypical nickelate SmNiO3. We perform calculations without Hubbard-like U potential on Ni 3d levels but with a meta-GGA better amending self-interaction errors. We find that at low doping, polarons form with intermediate localized states in the band gap resulting in a semiconducting behavior. At larger doping, the intermediate states spread more and more in the band gap until they merge either with the valence (hole doping) or the conduction (electron doping) band, ultimately resulting in a metallic state at 25% of R cation substitution. These results are reminiscent of experimental data available in the literature and demonstrate that DFT simulations without any empirical parameter are qualified for studying doping effects in correlated oxides and to explore the mechanisms underlying the superconducting phase of rare-earth nickelates.
167 - Shuai Dong , Wei Li , Xin Huang 2013
Recent experiments reported giant magnetoresistance at room temperature in LaOMnAs. Here a density functional theory calculation is performed to investigate magnetic properties of LaOMnAs. The ground state is found to be the G-type antiferromagnetic order within the $ab$ plane but coupled ferromagnetically between planes, in agreement with recent neutron investigations. The electronic band structures suggest an insulating state which is driven by the particular G-type magnetic order, while a metallic state accompanies the ferromagnetic order. This relation between magnetism and conductance may be helpful to qualitatively understand the giant magnetoresistance effects.
124 - V.V. Bannikov 2014
The structural, elastic, magnetic properties, as well as electronic structure and chemical bonding picture of new oxide 3d1-perovskite BaVO3, recently synthesized, were systematically investigated involving the first-principles FLAPW-GGA calculations. The obtained results are discussed in comparison with available experimental data, as well as with those obtained before for isostructural and isoelectronic SrVO3 perovskite.
A novel stable crystallographic structure is discovered in a variety of ABO3, ABF3 and A2O3 compounds (including materials of geological relevance, prototypes of multiferroics, exhibiting strong spin-orbit effects, etc...), via the use of first principles. This novel structure appears under hydrostatic pressure, and is the first post-post-perovskite phase to be found. It provides a successful solution to experimental puzzles in important systems, and is characterized by one-dimensional chains linked by group of two via edge-sharing oxygen/fluorine octahedra. Such unprecedented organization automatically results in anisotropic elastic properties and new magnetic arrangements. Depending on the system of choice, this post-post-perovskite structure also possesses electronic band gaps ranging from zero to ~ 10 eV being direct or indirect in nature, which emphasizes its universality and its potential to have striking, e.g., electrical or transport phenomena.
The molybdate oxides SrMoO$_3$, PbMoO$_3$, and LaMoO$_3$ are a class of metallic perovskites that exhibit interesting properties including high mobility, and unusual resistivity behavior. We use first-principles methods based on density functional theory to explore the electronic, crystal, and magnetic structure of these materials. In order to account for the electron correlations in the partially-filled Mo $4d$ shell, a local Hubbard $U$ interaction is included. The value of $U$ is estimated via the constrained random-phase approximation approach, and the dependence of the results on the choice of $U$ are explored. For all materials, GGA+$U$ predicts a metal with an orthorhombic, antiferromagnetic structure. For LaMoO$_3$, the $Pnma$ space group is the most stable, while for SrMoO$_3$ and PbMoO$_3$, the $Imma$ and $Pnma$ structures are close in energy. The $R_4^+$ octahedral rotations for SrMoO$_3$ and PbMoO$_3$ are found to be overestimated compared to the experimental low-temperature structure.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا