Do you want to publish a course? Click here

Absolute continuity of degenerate elliptic measure

154   0   0.0 ( 0 )
 Added by Mingming Cao
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Let $Omega subset mathbb{R}^{n+1}$ be an open set whose boundary may be composed of pieces of different dimensions. Assume that $Omega$ satisfies the quantitative openness and connectedness, and there exist doubling measures $m$ on $Omega$ and $mu$ on $partial Omega$ with appropriate size conditions. Let $Lu=-mathrm{div}(A abla u)$ be a real (not necessarily symmetric) degenerate elliptic operator in $Omega$. Write $omega_L$ for the associated degenerate elliptic measure. We establish the equivalence between the following properties: (i) $omega_L in A_{infty}(mu)$, (ii) $L$ is $L^p(mu)$-solvable for some $p in (1, infty)$, (iii) every bounded null solution of $L$ satisfies a Carleson measure estimate with respect to $mu$, (iv) the conical square function is controlled by the non-tangential maximal function in $L^q(mu)$ for some (or for all) $q in (0, infty)$ for any null solution of $L$, (v) $L$ is $mathrm{BMO}(mu)$-solvable, and (vi) every bounded null solution of $L$ is $varepsilon$-approximable for any $varepsilon>0$. On the other hand, we obtain a qualitative analogy of the previous equivalence. Indeed, we characterize the absolute continuity of $omega_L$ with respect to $mu$ in terms of local $L^2(mu)$ estimates of the truncated conical square function for any bounded null solution of $L$. This is also equivalent to the finiteness $mu$-almost everywhere of the truncated conical square function for any bounded null solution of $L$.



rate research

Read More

In this paper we study the existence of solutions of thedegererate elliptic system.
It is shown that the theory of real symmetric second-order elliptic operators in divergence form on $Ri^d$ can be formulated in terms of a regular strongly local Dirichlet form irregardless of the order of degeneracy. The behaviour of the corresponding evolution semigroup $S_t$ can be described in terms of a function $(A,B) mapsto d(A ;B)in[0,infty]$ over pairs of measurable subsets of $Ri^d$. Then [ |(phi_A,S_tphi_B)|leq e^{-d(A;B)^2(4t)^{-1}}|phi_A|_2|phi_B|_2 ] for all $t>0$ and all $phi_Ain L_2(A)$, $phi_Bin L_2(B)$. Moreover $S_tL_2(A)subseteq L_2(A)$ for all $t>0$ if and only if $d(A ;A^c)=infty$ where $A^c$ denotes the complement of $A$.
157 - Luan Hoang 2015
This paper is focused on the local interior $W^{1,infty}$-regularity for weak solutions of degenerate elliptic equations of the form $text{div}[mathbf{a}(x,u, abla u)] +b(x, u, abla u) =0$, which include those of $p$-Laplacian type. We derive an explicit estimate of the local $L^infty$-norm for the solutions gradient in terms of its local $L^p$-norm. Specifically, we prove begin{equation*} | abla u|_{L^infty(B_{frac{R}{2}}(x_0))}^p leq frac{C}{|B_R(x_0)|}int_{B_R(x_0)}| abla u(x)|^p dx. end{equation*} This estimate paves the way for our forthcoming work in establishing $W^{1,q}$-estimates (for $q>p$) for weak solutions to a much larger class of quasilinear elliptic equations.
A characterization of a semilinear elliptic partial differential equation (PDE) on a bounded domain in $mathbb{R}^n$ is given in terms of an infinite-dimensional dynamical system. The dynamical system is on the space of boundary data for the PDE. This is a novel approach to elliptic problems that enables the use of dynamical systems tools in studying the corresponding PDE. The dynamical system is ill-posed, meaning solutions do not exist forwards or backwards in time for generic initial data. We offer a framework in which this ill-posed system can be analyzed. This can be viewed as generalizing the theory of spatial dynamics, which applies to the case of an infinite cylindrical domain.
271 - Alexey M.Kulik 2010
General sufficient conditions are given for absolute continuity and convergence in variation of the distributions of the unctionals on a probability space, generated by a Poisson point measure. The phase space of the Poisson point measure is supposed to be of the form (0,infty)times U, and its intensity measure to be equal dtPi(du). We introduce the family of time stretching transformations of the configurations of the point measure. The sufficient conditions for absolute continuity and convergence in variation are given in the terms of the time stretching transformations and the relative differential operators. These conditions are applied to solutions of SDEs driven by Poisson point measures, including an SDEs with non-constant jump rate.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا