Do you want to publish a course? Click here

Feature-based Individual Fairness in k-Clustering

151   0   0.0 ( 0 )
 Added by Sourav Medya
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Ensuring fairness in machine learning algorithms is a challenging and important task. We consider the problem of clustering a set of points while ensuring fairness constraints. While there have been several attempts to capture group fairness in the k-clustering problem, fairness at an individual level is not well-studied. We introduce a new notion of individual fairness in k-clustering based on features that are not necessarily used for clustering. We show that this problem is NP-hard and does not admit a constant factor approximation. We then design a randomized algorithm that guarantees approximation both in terms of minimizing the clustering distance objective as well as individual fairness under natural restrictions on the distance metric and fairness constraints. Finally, our experimental results validate that our algorithm produces lower clustering costs compared to existing algorithms while being competitive in individual fairness.



rate research

Read More

We give a local search based algorithm for $k$-median and $k$-means (and more generally for any $k$-clustering with $ell_p$ norm cost function) from the perspective of individual fairness. More precisely, for a point $x$ in a point set $P$ of size $n$, let $r(x)$ be the minimum radius such that the ball of radius $r(x)$ centered at $x$ has at least $n/k$ points from $P$. Intuitively, if a set of $k$ random points are chosen from $P$ as centers, every point $xin P$ expects to have a center within radius $r(x)$. An individually fair clustering provides such a guarantee for every point $xin P$. This notion of fairness was introduced in [Jung et al., 2019] where they showed how to get an approximately feasible $k$-clustering with respect to this fairness condition. In this work, we show how to get a bicriteria approximation for fair $k$-clustering: The $k$-median ($k$-means) cost of our solution is within a constant factor of the cost of an optimal fair $k$-clustering, and our solution approximately satisfies the fairness condition (also within a constant factor). Further, we complement our theoretical bounds with empirical evaluation.
We present a new data-driven model of fairness that, unlike existing static definitions of individual or group fairness is guided by the unfairness complaints received by the system. Our model supports multiple fairness criteria and takes into account their potential incompatibilities. We consider both a stochastic and an adversarial setting of our model. In the stochastic setting, we show that our framework can be naturally cast as a Markov Decision Process with stochastic losses, for which we give efficient vanishing regret algorithmic solutions. In the adversarial setting, we design efficient algorithms with competitive ratio guarantees. We also report the results of experiments with our algorithms and the stochastic framework on artificial datasets, to demonstrate their effectiveness empirically.
In this paper, we focus on the fairness issues regarding unsupervised outlier detection. Traditional algorithms, without a specific design for algorithmic fairness, could implicitly encode and propagate statistical bias in data and raise societal concerns. To correct such unfairness and deliver a fair set of potential outlier candidates, we propose Deep Clustering based Fair Outlier Detection (DCFOD) that learns a good representation for utility maximization while enforcing the learnable representation to be subgroup-invariant on the sensitive attribute. Considering the coupled and reciprocal nature between clustering and outlier detection, we leverage deep clustering to discover the intrinsic cluster structure and out-of-structure instances. Meanwhile, an adversarial training erases the sensitive pattern for instances for fairness adaptation. Technically, we propose an instance-level weighted representation learning strategy to enhance the joint deep clustering and outlier detection, where the dynamic weight module re-emphasizes contributions of likely-inliers while mitigating the negative impact from outliers. Demonstrated by experiments on eight datasets comparing to 17 outlier detection algorithms, our DCFOD method consistently achieves superior performance on both the outlier detection validity and two types of fairness notions in outlier detection.
Feature selection is a prevalent data preprocessing paradigm for various learning tasks. Due to the expensive cost of acquiring supervision information, unsupervised feature selection sparks great interests recently. However, existing unsupervised feature selection algorithms do not have fairness considerations and suffer from a high risk of amplifying discrimination by selecting features that are over associated with protected attributes such as gender, race, and ethnicity. In this paper, we make an initial investigation of the fairness-aware unsupervised feature selection problem and develop a principled framework, which leverages kernel alignment to find a subset of high-quality features that can best preserve the information in the original feature space while being minimally correlated with protected attributes. Specifically, different from the mainstream in-processing debiasing methods, our proposed framework can be regarded as a model-agnostic debiasing strategy that eliminates biases and discrimination before downstream learning algorithms are involved. Experimental results on multiple real-world datasets demonstrate that our framework achieves a good trade-off between utility maximization and fairness promotion.
Many technical approaches have been proposed for ensuring that decisions made by machine learning systems are fair, but few of these proposals have been stress-tested in real-world systems. This paper presents an example of one teams approach to the challenge of applying algorithmic fairness approaches to complex production systems within the context of a large technology company. We discuss how we disentangle normative questions of product and policy design (like, how should the system trade off between different stakeholders interests and needs?) from empirical questions of system implementation (like, is the system achieving the desired tradeoff in practice?). We also present an approach for answering questions of the latter sort, which allows us to measure how machine learning systems and human labelers are making these tradeoffs across different relevant groups. We hope our experience integrating fairness tools and approaches into large-scale and complex production systems will be useful to other practitioners facing similar challenges, and illuminating to academics and researchers looking to better address the needs of practitioners.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا