Do you want to publish a course? Click here

Effect of Temperature History During Additive Manufacturing on Crystalline Morphology of Polyether Ether Ketone

96   0   0.0 ( 0 )
 Added by Navid Zobeiry
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Additive manufacturing parameters of high-performance polymers greatly affect the thermal history and consequently quality of the end-part. For fused deposition modeling (FDM), this may include printing speed, filament size, nozzle, and chamber temperatures, as well as build plate temperature. In this study, the effect of thermal convection inside a commercial 3D printer on thermal history and crystalline morphology of polyetheretherketone (PEEK) was investigated using a combined experimental and numerical approach. Using digital scanning calorimetry (DSC) and polarized optical microscopy (POM), crystallinity of PEEK samples was studied as a function of thermal history. In addition, using finite element (FE) simulations of heat transfer, which were calibrated using thermocouple measurements, thermal history of parts during virtual 3D printing was evaluated. By correlating the experimental and numerical results, the effect of printing parameters and convection on thermal history and PEEK crystalline morphology was established. It was found that the high melting temperature of PEEK, results in fast melt cooling rates followed by short annealing times during printing, leading to relatively low degree of crystallinity (DOC) and small crystalline morphology.



rate research

Read More

During the laser powder bed fusion (L-PBF) process, the built part undergoes multiple rapid heating-cooling cycles, leading to complex microstructures with nonuniform properties. In the present work, a computational framework, which weakly couples a finite element thermal model to a non-equilibrium PF model was developed to investigate the rapid solidification microstructure of a Ni-Nb alloy during L-PBF. The framework is utilized to predict the spatial variation of the morphology and size of cellular segregation structure as well as the microsegregation in single-track melt pool microstructures obtained under different process conditions. A solidification map demonstrating the variation of microstructural features as a function of the temperature gradient and growth rate is presented. A planar to cellular transition is predicted in the majority of keyhole mode melt pools, while a planar interface is predominant in conduction mode melt pools. The predicted morphology and size of the cellular segregation structure agrees well with experimental measurements.
Recent advances in the understanding and control of quantum technologies, such as those based on cold atoms, have resulted in devices with extraordinary metrological sensitivities. To realise this potential outside of a lab environment the size, weight and power consumption need to be reduced. Here we demonstrate the use of laser powder bed fusion, an additive manufacturing technique, as a production technique for the components that make up quantum sensors. As a demonstration we have constructed two key components using additive manufacturing, namely magnetic shielding and vacuum chambers. The initial prototypes for magnetic shields show shielding factors within a factor of 3 of conventional approaches. The vacuum demonstrator device shows that 3D-printed titanium structures are suitable for use as vacuum chambers, with the test system reaching base pressures of $5 pm 0.5 times 10^{-10}$ mbar. These demonstrations show considerable promise for the use of additive manufacturing for cold atom based quantum technologies, in future enabling improved integrated structures, allowing for the reduction in size, weight and assembly complexity.
79 - M. Rosa , C. Barou , V. Esposito 2019
Currently, additive manufacturing of ceramics by stereolithography (SLA) is limited to single materials and by a poor thickness resolution that strongly depends on the ceramic particles-UV light interaction. Combining selective laser curing with inkjet printing represents a novel strategy to overcome these constrains. Nonetheless, this approach requires UV-curable inks that allow hardening of the printed material and sintering to high density. In this work, we report how to design an ink for inkjet printing of yttria stabilized zirconia (YSZ) which can be impressed by addition of UV-curable monomers. We especially show how the formulation of the inks and particularly the UV-monomer concentration impacts the printability and the UV-curing. This leads to prints that are resistant to solvent washing first and densify to 96% dense YSZ layers after sintering.
Here we introduce a versatile stereolithographic route to produce three different kinds of Si-containing thermosets that yield high performance ceramics upon thermal treatment. Our approach is based on a fast and inexpensive thiol-ene free radical addition that can be applied for different classes of preceramic polymers with carbon-carbon double bonds. Due to the rapidity and efficiency of the thiol-ene click reactions, this additive manufacturing process can be effectively carried out using conventional light sources on benchtop printers. Through light initiated cross-linking, the liquid preceramic polymers transform into stable infusible thermosets that preserve their shape during the polymer-to-ceramic transformation. Through pyrolysis the thermosets transform into glassy ceramics with uniform shrinkage and high density. The obtained ceramic structures are nearly fully dense, have smooth surfaces, and are free from macroscopic voids and defects. A fabricated SiOC honeycomb was shown to exhibit a significantly higher compressive strength to weight ratio in comparison to other porous ceramics.
Additive manufacturing (AM) techniques have gained interest in the tissue engineering field thanks to their versatility and unique possibilities of producing constructs with complex macroscopic geometries and defined patterns. Recently, composite materials - namely heterogeneous biomaterials identified as continuous phase (matrix) and reinforcement (filler) - have been proposed as inks that can be processed by AM to obtain scaffolds with improved biomimetic and bioactive properties. Significant efforts have been dedicated to hydroxyapatite (HA)-reinforced composites, especially targeting bone tissue engineering, thanks to the chemical similarities of HA with respect to mineral components of native mineralized tissues. Here we review applications of AM techniques to process HA-reinforced composites and biocomposites for the production of scaffolds with biological matrices, including cellular tissues. The primary outcomes of recent investigations in terms of morphological, structural, and in vitro and in vivo biological properties of the materials are discussed. We classify the approaches based on the nature of the matrices employed to embed the HA reinforcements and produce the tissue substitutes and report a critical discussion on the presented state of the art as well as the future perspectives, to offer a comprehensive picture of the strategies investigated as well as challenges in this emerging field.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا