Do you want to publish a course? Click here

Extraction of energy from an extremal rotating electrovacuum black hole: Particle collisions in the equatorial plane

150   0   0.0 ( 0 )
 Added by Filip Hejda
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Collisional Penrose process received much attention when Banados, Silk and West (BSW) pointed out the possibility of test-particle collisions with arbitrarily high centre-of-mass energy in the vicinity of the horizon of an extremally rotating black hole. However, the energy that can be extracted from the black hole in this promising, if simplified scenario, called BSW effect, turned out to be subject to unconditional upper bounds. And although such bounds were not found for the electrostatic variant of the process, this version is also astrophysically unfeasible, since it requires a maximally charged black hole. In order to deal with these deficiencies, we revisit the unified version of the BSW effect concerning collisions of charged particles in the equatorial plane of a rotating electrovacuum black-hole spacetime. Performing a general analysis of energy extraction through this process, we explain in detail how the seemingly incompatible limiting cases arise. Furthermore, we demonstrate that the unconditional upper bounds on the extracted energy are absent for arbitrarily small values of the black hole electric charge. Therefore, our setup represents an intriguing simplified model for possible highly energetic processes happening around astrophysical black holes, which may spin fast, but can have only a tiny electric charge induced via interaction with an external magnetic field.



rate research

Read More

Determining the conditions under which a black hole can be produced is a long-standing and fundamental problem in general relativity. We use numerical simulations of colliding selfgravitating fluid objects to study the conditions of black-hole formation when the objects are boosted to ultrarelativistic speeds. Expanding on previous work, we show that the collision is characterized by a type-I critical behaviour, with a black hole being produced for masses above a critical value, M_c, and a partially bound object for masses below the critical one. More importantly, we show for the first time that the critical mass varies with the initial effective Lorentz factor <gamma> following a simple scaling of the type M_c ~ K <gamma>^{-1.0}, thus indicating that a black hole of infinitesimal mass is produced in the limit of a diverging Lorentz factor. Furthermore, because a scaling is present also in terms of the initial stellar compactness, we provide a condition for black-hole formation in the spirit of the hoop conjecture.
We define and sketch the generalized ergosphere of the Majumdar-Papapetrou spacetime. In particular, we demonstrate the existence of closed orbits of negative energy that live outside the event horizon of such a spacetime. Relying on the Penrose process mechanism, we use these orbits to illustrate the possibility of energy extraction from a binary black hole by particle scattering. We also analyze the efficiency of the process, and construct explicit examples that optimize the extraction of energy.
Black holes are the simplest macroscopic objects, and provide unique tests of General Relativity. They have been compared to the Hydrogen atom in quantum mechanics. Here, we establish a few facts about the simplest systems bound by gravity: black hole binaries. We provide strong evidence for the existence of `global photosurfaces surrounding the binary, and of binary quasinormal modes leading to exponential decay of massless fields when the binary spacetime is slightly perturbed. These two properties go hand in hand, as they did for isolated black holes. The binary quasinormal modes have high quality factor and may be prone to resonant excitations. Finally, we show that energy extraction from binaries is generic and we find evidence of a new mechanism -- akin to the Fermi acceleration process -- whereby the binary transfers energy to its surroundings in a cascading process. The mechanism is conjectured to work when the individual components spin, or are made of compact stars.
107 - M. Bousder , M. Bennai 2021
We study the charge of the 4D-Einstein-Gauss-Bonnet black hole by a negative charge and a positive charge of a particle-antiparticle pair on the horizons r- and r+, respectively. We show that there are two types of the Schwarzschild black hole. We show also that the Einstein-Gauss-Bonnet black hole charge has quantified values. We obtain the Hawking-Bekenstein formula with two logarithmic corrections, the second correction depends on the cosmological constant and the black hole charge. Finally, we study the thermodynamics of the EGB-AdS black hole.
We produce the first numerical relativity binary black hole gravitational waveforms in a higher-curvature theory beyond general relativity. In particular, we study head-on collisions of binary black holes in order-reduced dynamical Chern-Simons gravity. This is a precursor to producing beyond-general-relativity waveforms for inspiraling binary black hole systems that are useful for gravitational wave detection. Head-on collisions are interesting in their own right, however, as they cleanly probe the quasi-normal mode spectrum of the final black hole. We thus compute the leading-order dynamical Chern-Simons modifications to the complex frequencies of the post-merger gravitational radiation. We consider equal-mass systems, with equal spins oriented along the axis of collision, resulting in remnant black holes with spin. We find modifications to the complex frequencies of the quasi-normal mode spectrum that behave as a power law with the spin of the remnant, and that are not degenerate with the frequencies associated with a Kerr black hole of any mass and spin. We discuss these results in the context of testing general relativity with gravitational wave observations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا