Do you want to publish a course? Click here

Binary fractions of G and K dwarf stars based on the Gaia EDR3 and LAMOST DR5: impacts of the chemical abundances

240   0   0.0 ( 0 )
 Added by Zexi Niu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Basing on the large volume textit{Gaia} Early Data Release 3 and LAMOST Data Release 5 data, we estimate the bias-corrected binary fractions of the field late G and early K dwarfs. A stellar locus outlier method is used in this work, which works well for binaries of various periods and inclination angles with single epoch data. With a well-selected, distance-limited sample of about 90 thousand GK dwarfs covering wide stellar chemical abundances, it enables us to explore the binary fraction variations with different stellar populations. The average binary fraction is 0.42$pm$0.01 for the whole sample. Thin disk stars are found to have a binary fraction of 0.39$pm$0.02, thick disk stars own a higher one of 0.49$pm$0.02, while inner halo stars possibly own the highest binary fraction. For both the thin and thick disk stars, the binary fractions decrease toward higher [Fe/H], [$alpha$/H], and [M/H] abundances. However, the suppressing impacts of the [Fe/H], [$alpha$/H], and [M/H] are more significant for the thin disk stars than those for the thick disk stars. For a given [Fe/H], a positive correlation between [$alpha$/Fe] and the binary fraction is found for the thin disk stars. However, this tendency disappears for the thick disk stars. We suspect that it is likely related to the different formation histories of the thin and thick disks. Our results provide new clues for theoretical works on binary formation.



rate research

Read More

Combing Gaia DR2 with LAMOST DR5, we spectroscopically identified 924 hot subdwarf stars, among which 32 stars exhibit strong double-lined composite spectra. We measured the effective temperature $T_{rm eff}$, surface gravity $log,g$, helium abundance $y=n{rm He}/n{rm H}$, and radial velocities of 892 non-composite spectra hot subdwarf stars by fitting LAMOST observations with Tlusty/Synspec non-LTE synthetic spectra. We outlined four different groups in the $T_{rm eff}-log,g$ diagram with our helium abundance classification scheme and two nearly parallel sequences in the $T_{rm eff}-log(y)$ diagram. 3D Galactic space motions and orbits of 747 hot subdwarf stars with $(G_{BP}-G_{RP})_{0}<-0.36$ mag were computed using LAMOST radial velocities and Gaia parallaxes and proper motions. Based on the $U-V$ velocity diagram, $J_{z}-$eccentricity diagram, and Galactic orbits, we derived Galactic population classifications and the fractional distributions of the four hot subdwarf helium groups in the halo, thin disk and thick disk. Comparisons with the predictions of binary population synthesis calculations (Han 2008) suggest that He-rich hot subdwarf stars with $log(y)ge0$ are from the double helium white dwarfs merger, He-deficient hot subdwarf stars with $-2.2lelog(y)<-1$ from the common envelope ejection, and He-deficient hot subdwarf stars with $log(y)<-2.2$ from the stable Roche lobe overflow channels. The relative number of He-rich hot subdwarf stars with $-1lelog(y)<0$ and $log(y)ge0$ in the halo is more than twice the prediction of Zhang et al.(2017), even more than six times in the thin disk, which implies that the mergers of helium white dwarfs with low mass main sequence stars may not be the main formation channel of He-rich hot subdwarf stars with $-1lelog(y)<0$, specially in younger environments.
Stellar systems composed of single, double, triple or high-order systems are rightfully regarded as the fundamental building blocks of the Milky Way. Binary stars play an important role in formation and evolution of the Galaxy. Through comparing the radial velocity variations from multi-epoch observations, we analyze the binary fraction of dwarf stars observed with the LAMOST. Effects of different model assumptions such as orbital period distributions on the estimate of binary fractions, are investigated. The results based on log-normal distribution of orbital periods reproduce the previous complete analyses better than the power-law distribution. We find that the binary fraction increases with $T_{rm eff}$ and decreases with [Fe/H]. We first investigate the relation between $alpha$-elements and binary fraction in such a large sample as the LAMOST. The old stars with high [$alpha$/Fe] dominate higher binary fraction than young stars with low [$alpha$/Fe]. At the same mass, former forming stars possess a higher binary fraction than newly forming ones, which may be related with the evolution of the Galaxy.
The surface brightness -- colour relation (SBCR) is a basic tool in establishing precise and accurate distances within the Local Group. Detached eclipsing binary stars with accurately determined radii and trigonometric parallaxes allow for a calibration of the SBCRs with unprecedented accuracy. We analysed four nearby eclipsing binary stars containing late F-type main sequence components: AL Ari, AL Dor, FM Leo and BN Scl. We determined very precise spectroscopic orbits and combined them with high precision ground- and space-based photometry. We derived the astrophysical parameters of their components with mean errors of 0.1% for mass and 0.4% for radius. We combined those four systems with another 24 nearby eclipsing binaries with accurately known radii from the literature for which $Gaia$ EDR3 parallaxes are available, in order to derive the SBCRs. The resulting SBCRs cover stellar spectral types from B9 V to G7 V. For calibrations we used Johnson optical $B$ and $V$, $Gaia$ $G_{rm BP}$ and $G$ and 2MASS $JHK$ bands. The most precise relations are calibrated using the infrared $K$ band and allow to predict angular diameters of A-, F-, and G-type dwarf and subgiant stars with a precision of 1%.
We have performed Monte Carlo simulations of the trajectories of several runaway stars using their parallaxes and proper motions from the Gaia EDR3 catalogue. We have confirmed the hypothesis that the stars AE Aur and $mu$Col are a product of the multiple system breakup $sim$2.5 Myr ago and the Orion Trapezium may be the parent cluster for this pair of stars. We show that the data from the Gaia EDR3 catalogue for the star $iota$Ori, mainly the parallax, do not allow us to talk about the breakup of the multiple system of AE Aur, $mu$Col, and $iota$Ori. The existence of close pair encounters between the stars HD 30112 and HD 43112 $sim$1 Myr ago has been confirmed. Close triple encounters confirm the hypothesis that the stars HD 30112 and HD 43112 escaped from the parent cluster Col 69. We show that the stars HIP 28133 and TYC 5368-1541-1 have a nonzero probability of escape from the region within 10 pc of the center of the Orion Trapezium cluster and a fairly high probability (about 8%) that they were both at distances less than 20 pc from the center of the Orion Trapezium $sim$2.5 Myr ago. It has been established for the first time that the stars Gaia EDR3 3021115184676332288 and Gaia EDR3 2983790269606043648 have a probability of about 0.5% that they broke up as a binary system $sim$1.1 Myr ago. The star Gaia EDR3 3021115184676332288 has a probability of about 16% that it escaped from the region within 10 pc of the center of the Orion Trapezium cluster $sim$1 Myr ago.
144 - Xiaoyue Zhou 2021
In the Gaia era, the membership analysis and parameter determination of open clusters (OCs) are more accurate. We performed a census of OCs classical Cepheids based on Gaia Early Data Release 3 (EDR3) and obtained a sample of 33 OC Cepheids fulfilling the constraints of the spatial position, proper motion, parallax and evolution state. 13 of 33 OC Cepheids are newly discovered. Among them, CM Sct is the first first-crossing Cepheids with direct evidence of evolution. DP Vel is likely a fourth- or fifth-crossing Cepheids. Based on independent distances from OCs, W_1-band period-luminosity relation of Cepheids is determined with a 3.5% accuracy: <MW1> = -(3.274 +- 0.090) log P - (-2.567 +- 0.080). The Gaia-band period-Wesenheit relation agrees well with Ripepi et al. (2019). A direct period-age relation for fundamental Cepheids are also determined based on OCs age, that is log t = -(0.638 +- 0.063) log P + (8.569 +- 0.057).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا