Do you want to publish a course? Click here

Unconventional quantum phase transitions in a one-dimensional Lieb-Schultz-Mattis system

92   0   0.0 ( 0 )
 Added by Wayne Zheng
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study quantum phases and phase transitions in a one-dimensional interacting fermion system with a Lieb-Schultz-Mattis (LSM) type anomaly. Specifically, the inversion symmetry enforces any symmetry-preserving gapped ground state of the system to be a Kitaev chain, following a Lieb-Schultz-Mattis type theorem that we prove. Alternatively, via the Jordan-Wigner transformation, this system describes a spin system whose gapped ground states must break either the inversion or the Ising symmetry associated with fermion parity. We obtain a phase diagram using analytical methods and variational matrix product state simulations, and study the critical behaviors of the quantum phase transitions therein using entanglement entropy, energy variance and finite size scaling of order parameters. In particular, we observe continuous phase transitions between different ordered phases that are beyond the Ginzburg-Landau-Wilson paradigm, in analogy to the deconfined quantum critical points in two spatial dimensions. We show this type of 1D deconfined quantum critical point is described by the Tomonaga-Luttinger liquid theory, and extract the Luttinger parameter and critical exponents. We also identify a gapless phase between two ordered phases, which cannot be described by a U(1) Luttinger liquid.



rate research

Read More

The Lieb-Schultz-Mattis (LSM) theorem states that a spin system with translation and spin rotation symmetry and half-integer spin per unit cell does not admit a gapped symmetric ground state lacking fractionalized excitations. That is, the ground state must be gapless, spontaneously break a symmetry, or be a gapped spin liquid. Thus, such systems are natural spin-liquid candidates if no ordering is found. In this work, we give a much more general criterion that determines when an LSM-type theorem holds in a spin system. For example, we consider quantum magnets with arbitrary space group symmetry and/or spin-orbit coupling. Our criterion is intimately connected to recent work on the general classification of topological phases with spatial symmetries and also allows for the computation of an anomaly associated with the existence of an LSM theorem. Moreover, our framework is also general enough to encompass recent works on SPT-LSM theorems where the system admits a gapped symmetric ground state without fractionalized excitations, but such a ground state must still be non-trivial in the sense of symmetry-protected topological (SPT) phases.
70 - Meng Cheng 2018
The Lieb-Schultz-Mattis (LSM) theorem and its higher-dimensional generalizations by Oshikawa and Hastings establish that a translation-invariant lattice model of spin-$1/2$s can not have a non-degenerate ground state preserving both spin and translation symmetries. Recently it was shown that LSM theorems can be interpreted in terms of bulk-boundary correspondence of certain weak symmetry-protected topological (SPT) phases. In this work we discuss LSM-type theorems for two-dimensional fermionic systems, which have no bosonic analogs. They follow from a general classification of weak SPT phases of fermions in three dimensions. We further derive constraints on possible gapped symmetry-enriched topological phases in such systems. In particular, we show that lattice translations must permute anyons, thus leading to symmetry-enforced non-Abelian dislocations, or genons. We also discuss surface states of other weak SPT phases of fermions.
We propose and prove a family of generalized Lieb-Schultz-Mattis (LSM) theorems for symmetry protected topological (SPT) phases on boson/spin models in any dimensions. The conventional LSM theorem, applicable to e.g. any translation invariant system with an odd number of spin-1/2 particles per unit cell, forbids a symmetric short-range-entangled ground state in such a system. Here we focus on systems with no LSM anomaly, where global/crystalline symmetries and fractional spins within the unit cell ensure that any symmetric SRE ground state must be a nontrivial SPT phase with anomalous boundary excitations. Depending on models, they can be either strong or higher-order crystalline SPT phases, characterized by nontrivial surface/hinge/corner states. Furthermore, given the symmetry group and the spatial assignment of fractional spins, we are able to determine all possible SPT phases for a symmetric ground state, using the real space construction for SPT phases based on the spectral sequence of cohomology theory. We provide examples in one, two and three spatial dimensions, and discuss possible physical realization of these SPT phases based on condensation of topological excitations in fractionalized phases.
We develop a general operator algebraic method which focuses on projective representations of symmetry group for proving Lieb-Schultz-Mattis type theorems, i.e., no-go theorems that rule out the existence of a unique gapped ground state (or, more generally, a pure split state), for quantum spin chains with on-site symmetry. We first prove a theorem for translation invariant spin chains that unifies and extends two theorems proved by two of the authors in [OT1]. We then prove a Lieb-Schultz-Mattis type theorem for spin chains that are invariant under the reflection about the origin and not necessarily translation invariant.
We present a mixed spin-(1/2, 5/2) chain composed of a charge-transfer salt (4-Br-$o$-MePy-V)FeCl$_4$. We observe the entire magnetization curve up to saturation, which exhibits a clear Lieb-Mattis magnetization plateau and subsequent quantum phase transition towards the gapless Luttinger-liquid phase. The observed magnetic behavior is quantitatively explained by a mixed spin-(1/2, 5/2) chain model. The present results demonstrate a quantum many-body effect based on quantum topology and provide a new stage in the search for topological properties in condensed matter physics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا