Do you want to publish a course? Click here

Fermionic Lieb-Schultz-Mattis Theorems and Weak Symmetry-Protected Phases

71   0   0.0 ( 0 )
 Added by Meng Cheng
 Publication date 2018
  fields Physics
and research's language is English
 Authors Meng Cheng




Ask ChatGPT about the research

The Lieb-Schultz-Mattis (LSM) theorem and its higher-dimensional generalizations by Oshikawa and Hastings establish that a translation-invariant lattice model of spin-$1/2$s can not have a non-degenerate ground state preserving both spin and translation symmetries. Recently it was shown that LSM theorems can be interpreted in terms of bulk-boundary correspondence of certain weak symmetry-protected topological (SPT) phases. In this work we discuss LSM-type theorems for two-dimensional fermionic systems, which have no bosonic analogs. They follow from a general classification of weak SPT phases of fermions in three dimensions. We further derive constraints on possible gapped symmetry-enriched topological phases in such systems. In particular, we show that lattice translations must permute anyons, thus leading to symmetry-enforced non-Abelian dislocations, or genons. We also discuss surface states of other weak SPT phases of fermions.



rate research

Read More

We propose and prove a family of generalized Lieb-Schultz-Mattis (LSM) theorems for symmetry protected topological (SPT) phases on boson/spin models in any dimensions. The conventional LSM theorem, applicable to e.g. any translation invariant system with an odd number of spin-1/2 particles per unit cell, forbids a symmetric short-range-entangled ground state in such a system. Here we focus on systems with no LSM anomaly, where global/crystalline symmetries and fractional spins within the unit cell ensure that any symmetric SRE ground state must be a nontrivial SPT phase with anomalous boundary excitations. Depending on models, they can be either strong or higher-order crystalline SPT phases, characterized by nontrivial surface/hinge/corner states. Furthermore, given the symmetry group and the spatial assignment of fractional spins, we are able to determine all possible SPT phases for a symmetric ground state, using the real space construction for SPT phases based on the spectral sequence of cohomology theory. We provide examples in one, two and three spatial dimensions, and discuss possible physical realization of these SPT phases based on condensation of topological excitations in fractionalized phases.
The Lieb-Schultz-Mattis (LSM) theorem states that a spin system with translation and spin rotation symmetry and half-integer spin per unit cell does not admit a gapped symmetric ground state lacking fractionalized excitations. That is, the ground state must be gapless, spontaneously break a symmetry, or be a gapped spin liquid. Thus, such systems are natural spin-liquid candidates if no ordering is found. In this work, we give a much more general criterion that determines when an LSM-type theorem holds in a spin system. For example, we consider quantum magnets with arbitrary space group symmetry and/or spin-orbit coupling. Our criterion is intimately connected to recent work on the general classification of topological phases with spatial symmetries and also allows for the computation of an anomaly associated with the existence of an LSM theorem. Moreover, our framework is also general enough to encompass recent works on SPT-LSM theorems where the system admits a gapped symmetric ground state without fractionalized excitations, but such a ground state must still be non-trivial in the sense of symmetry-protected topological (SPT) phases.
We consider 2+1D lattice models of interacting bosons or spins, with both magnetic flux and fractional spin in the unit cell. We propose and prove a modified Lieb-Shultz Mattis (LSM) theorem in this setting, which applies even when the spin in the enlarged magnetic unit cell is integral. There are two nontrivial outcomes for gapped ground states that preserve all symmetries. In the first case, one necessarily obtains a symmetry protected topological (SPT) phase with protected edge states. This allows us to readily construct models of SPT states by decorating dimer models of Mott insulators to yield SPT phases, which should be useful in their physical realization. In the second case, exotic bulk excitations, i.e. topological order, is necessarily present. While both scenarios require fractional spin in the lattice unit cell, the second requires that the symmetries protecting the fractional spin is related to that involved in the magnetic translations. Our discussion encompasses the general notion of fractional spin (projective symmetry representations) and magnetic flux (magnetic translations tied to a symmetry generator). The resulting SPTs display a dyonic character in that they associate charge with symmetry flux, allowing the flux in the unit cell to screen the projective representation on the sites. We provide an explicit formula that encapsulates this physics, which identifies a specific set of allowed SPT phases.
We develop a general operator algebraic method which focuses on projective representations of symmetry group for proving Lieb-Schultz-Mattis type theorems, i.e., no-go theorems that rule out the existence of a unique gapped ground state (or, more generally, a pure split state), for quantum spin chains with on-site symmetry. We first prove a theorem for translation invariant spin chains that unifies and extends two theorems proved by two of the authors in [OT1]. We then prove a Lieb-Schultz-Mattis type theorem for spin chains that are invariant under the reflection about the origin and not necessarily translation invariant.
The construction and classification of symmetry-protected topological (SPT) phases in interacting bosonic and fermionic systems have been intensively studied in the past few years. Very recently, a complete classification and construction of space group SPT phases were also proposed for interacting bosonic systems. In this paper, we attempt to generalize this classification and construction scheme systematically into interacting fermion systems. In particular, we construct and classify point group SPT phases for 2D interacting fermion systems via lower-dimensional block-state decorations. We discover several intriguing fermionic SPT states that can only be realized in interacting fermion systems (i.e., not in free-fermion or bosonic SPT systems). Moreover, we also verify the recently conjectured crystalline equivalence principle for 2D interacting fermion systems. Finally, the potential experimental realization of these new classes of point group SPT phases in 2D correlated superconductors is addressed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا