Do you want to publish a course? Click here

A Generalized Theory of Power

112   0   0.0 ( 0 )
 Added by Dongliang Duan
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The complex representation of real-valued instantaneous power may be written as the sum of two complex powers, one Hermitian and the other non-Hermitian, or complementary. A virtue of this representation is that it consists of a power triangle rotating around a fixed phasor, thus clarifying what should be meant by the power triangle. The in-phase and quadrature components of complementary power encode for active and non-active power. When instantaneous power is defined for a Thevenin equivalent circuit, these are time-varying real and reactive power components. These claims hold for sinusoidal voltage and current, and for non-sinusoidal voltage and current. Spectral representations of Hermitian, complementary, and instantaneous power show that, frequency-by-frequency, these powers behave exactly as they behave in the single frequency sinusoidal case. Simple hardware diagrams show how instantaneous active and non-active power may be extracted from metered voltage and current, even in certain non-sinusoidal cases.

rate research

Read More

83 - Cunlai Pu , Pang Wu 2019
In modern power grids, a local failure or attack can trigger catastrophic cascading failures, which make it challenging to assess the attack vulnerability of power grids. In this Brief, we define the $K$-link attack problem and study the attack vulnerability of power grids under cascading failures. Particularly, we propose a link centrality measure based on both topological and electrical properties of power grids. According to this centrality, we propose a greedy attack algorithm and an optimal attack algorithm. Simulation results on standard IEEE bus test data show that the optimal attack is better than the greedy attack and the traditional PSO-based attack in fracturing power grids. Moreover, the greedy attack has smaller computational complexity than the optimal attack and the PSO-based attack with an adequate attack efficiency. Our work helps to understand the vulnerability of power grids and provides some clues for securing power grids.
The modern power system is evolving with increasing penetration of power electronics introducing complicated electromagnetic phenomenon. Electromagnetic transient (EMT) simulation is essential to understand power system behavior under disturbance which however is one of the most sophisticated and time-consuming applications in power system. To improve the electromagnetic transient simulation efficiency while keeping the simulation accuracy, this paper proposes to model and simulate power system electromagnetic transients by very large-scale integrated circuit (VLSI) as a preliminary exploration to eventually represent power system by VLSI circuit chip avoiding numerical calculation. To proof the concept, a simple 5 bus system is modeled and simulated to verify the feasibility of the proposed approach.
Transient stability analysis (TSA) plays an important role in power system analysis to investigate the stability of power system. Traditionally, transient stability analysis methods have been developed using time domain simulation by means of numerical integration method. In this paper, a new approach is proposed to model power systems as an integrated circuit and simulate the power system dynamic behavior by integrated circuit simulator. The proposed method modeled power grid, generator, governor, and exciter with high fidelity. The power system dynamic simulation accuracy and efficiency of the proposed approach are verified and demonstrated by case study on an IEEE standard system.
An unexpected and somewhat surprising observation is that two counter-cascaded systems, given the right conditions, can exhibit multivaluedness from one of the outputs to the other. The main result presented here is a necessary and sufficient condition for multivaluedness to be exhibited by counter-cascaded systems using the novel notions of immanence and its opposite, transcendence, introduced here. Subsequent corollaries provide further characterization of multivaluedness under specific conditions. As an application of our theoretical results, we demonstrate how these aid in the structural complexity reduction of complex networks.
The large-scale integration of converter-interfaced resources in electrical power systems raises new stability threats which call for a new theoretic framework for modelling and analysis. Here we present the theory of power-communication isomorphism to solve this grand challenge. It is revealed that an intrinsic communication mechanism governs the synchronisation of all apparatus in power systems based on which a unified representation for heterogeneous apparatus and behaviours is established. We develop the mathematics to model the dynamic interaction within a power-communication isomorphic system which yield a simple stability criterion for complex systems that can be intuitively interpreted and thus conveniently applied in practice.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا