Do you want to publish a course? Click here

Eliminating oscillation in partial sum approximation of periodic function

115   0   0.0 ( 0 )
 Added by Wu-Sheng Dai
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

If we cannot obtain all terms of a series, or if we cannot sum up a series, we have to turn to the partial sum approximation which approximate a function by the first several terms of the series. However, the partial sum approximation often does not work well for periodic functions. In the partial sum approximation of a periodic function, there exists an incorrect oscillation which cannot be eliminated by keeping more terms, especially at the domain endpoints. A famous example is the Gibbs phenomenon in the Fourier expansion. In the paper, we suggest an approach for eliminating such oscillations in the partial sum approximation of periodic functions.



rate research

Read More

218 - N. A. Carella 2021
Let $ xgeq 1 $ be a large number, let $ [x]=x-{x} $ be the largest integer function, and let $ sigma(n)$ be the sum of divisors function. This note presents the first proof of the asymptotic formula for the average order $ sum_{pleq x}sigma([x/p])=c_0xlog log x+O(x) $ over the primes, where $c_0>0$ is a constant. More generally, $ sum_{pleq x}sigma([x/(p+a)])=c_0xlog log x+O(x) $ for any fixed integer $a$.
192 - N. A. Carella 2021
Let $ xgeq 1 $ be a large number, let $ [x]=x-{x} $ be the largest integer function, and let $ varphi(n)$ be the Euler totient function. The result $ sum_{nleq x}varphi([x/n])=(6/pi^2)xlog x+Oleft ( x(log x)^{2/3}(loglog x)^{1/3}right ) $ was proved very recently. This note presents a short elementary proof, and sharpen the error term to $ sum_{nleq x}varphi([x/n])=(6/pi^2)xlog x+O(x) $. In addition, the first proofs of the asymptotics formulas for the finite sums $ sum_{nleq x}psi([x/n])=(15/pi^2)xlog x+O(xlog log x) $, and $ sum_{nleq x}sigma([x/n])=(pi^2/6)xlog x+O(x log log x) $ are also evaluated here.
This paper considers two-player zero-sum finite-horizon Markov games with simultaneous moves. The study focuses on the challenging settings where the value function or the model is parameterized by general function classes. Provably efficient algorithms for both decoupled and {coordinated} settings are developed. In the {decoupled} setting where the agent controls a single player and plays against an arbitrary opponent, we propose a new model-free algorithm. The sample complexity is governed by the Minimax Eluder dimension -- a new dimension of the function class in Markov games. As a special case, this method improves the state-of-the-art algorithm by a $sqrt{d}$ factor in the regret when the reward function and transition kernel are parameterized with $d$-dimensional linear features. In the {coordinated} setting where both players are controlled by the agent, we propose a model-based algorithm and a model-free algorithm. In the model-based algorithm, we prove that sample complexity can be bounded by a generalization of Witness rank to Markov games. The model-free algorithm enjoys a $sqrt{K}$-regret upper bound where $K$ is the number of episodes. Our algorithms are based on new techniques of alternate optimism.
79 - Attila Losonczi 2021
We present a common ground for infinite sums, unordered sums, Riemann integrals, arc length and some generalized means. It is based on extending functions on finite sets using Hausdorff metric in a natural way.
628 - Jorma Jormakka 2020
This paper proves that there does not exist a polynomial-time algorithm to the the subset sum problem. As this problem is in NP, the result implies that the class P of problems admitting polynomial-time algorithms does not equal the class NP of problems admitting nondeterministic polynomial-time algorithms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا