Do you want to publish a course? Click here

Multiletter codes to boost superadditivity of coherent information in quantum communication lines with polarization dependent losses

83   0   0.0 ( 0 )
 Added by Sergey Filippov
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Coherent information quantifies the achievable rate of the reliable quantum information transmission through a communication channel. Use of the correlated quantum states (multiletter codes) instead of the factorized ones (single-letter codes) may result in an increase in the achievable rate, a phenomenon known as the coherent-information superadditivity. However, even for simple physical models of channels it is rather difficult to detect the superadditivity and find the advantageous multiletter codes. Here we consider the case of polarization dependent losses and propose some physically motivated multiletter codes which outperform all single-letter ones in a wide range of the channel parameters. We show that in the asymptotic limit of the infinite code length the superadditivity phenomenon takes place whenever the communication channel is neither degradable nor antidegradable. Besides the superadditivity identification, we also provide a method how to modify the proposed codes and get a higher quantum communication rate by doubling the code length. The obtained results give a deeper understanding of useful multiletter codes and may serve as a benchmark for quantum capacity estimations and future approaches toward an optimal strategy to transfer quantum information.

rate research

Read More

85 - Shang Yu , Yu Meng , Raj B. Patel 2020
We present an experimental approach to construct a dephrasure channel, which contains both dephasing and erasure noises, and can be used as an efficient tool to study the superadditivity of coherent information. By using a three-fold dephrasure channel, the superadditivity of coherent information is observed, and a substantial gap is found between the zero single-letter coherent information and zero quantum capacity. Particularly, we find that when the coherent information of n channel uses is zero, in the case of larger number of channel uses, it will become positive. These phenomena exhibit a more obvious superadditivity of coherent information than previous works, and demonstrate a higher threshold for non-zero quantum capacity. Such novel channels built in our experiment also can provide a useful platform to study the non-additive properties of coherent information and quantum channel capacity.
105 - Sergey N. Filippov 2021
Losses in quantum communication lines severely affect the rates of reliable information transmission and are usually considered to be state-independent. However, the loss probability does depend on the system state in general, with the polarization dependent losses being a prominent example. Here we analyze biased trace decreasing quantum operations that assign different loss probabilities to states and introduce the concept of a generalized erasure channel. We find lower and upper bounds for the classical and quantum capacities of the generalized erasure channel as well as characterize its degradability and antidegradability. We reveal superadditivity of coherent information in the case of the polarization dependent losses, with the difference between the two-letter quantum capacity and the single-letter quantum capacity exceeding $7.197 cdot 10^{-3}$ bit per qubit sent, the greatest value among qubit-input channels reported so far.
54 - Sergey N. Filippov 2021
Trace decreasing dynamical maps are as physical as trace preserving ones; however, they are much less studied. Here we overview how the quantum Sinkhorn theorem can be successfully applied to find a two-qubit entangled state which has the strongest robustness against local noises and losses of quantum information carriers. We solve a practically relevant problem of finding an optimal initial encoding to distribute entangled polarized qubits though communication lines with polarization dependent losses and extra depolarizing noise. The longest entanglement lifetime is shown to be attainable with a state that is not maximally entangled.
Quantum sensing and computation can be realized with superconducting microwave circuits. Qubits are engineered quantum systems of capacitors and inductors with non-linear Josephson junctions. They operate in the single-excitation quantum regime, photons of $27 mu$eV at 6.5 GHz. Quantum coherence is fundamentally limited by materials defects, in particular atomic-scale parasitic two-level systems (TLS) in amorphous dielectrics at circuit interfaces.[1] The electric fields driving oscillating charges in quantum circuits resonantly couple to TLS, producing phase noise and dissipation. We use coplanar niobium-on-silicon superconducting resonators to probe decoherence in quantum circuits. By selectively modifying interface dielectrics, we show that most TLS losses come from the silicon surface oxide, and most non-TLS losses are distributed throughout the niobium surface oxide. Through post-fabrication interface modification we reduced TLS losses by 85% and non-TLS losses by 72%, obtaining record single-photon resonator quality factors above 5 million and approaching a regime where non-TLS losses are dominant. [1]Muller, C., Cole, J. H. & Lisenfeld, J. Towards understanding two-level-systems in amorphous solids: insights from quantum circuits. Rep. Prog. Phys. 82, 124501 (2019)
We develop a theoretical framework for the exploration of quantum mechanical coherent population transfer phenomena, with the ultimate goal of constructing faithful models of devices for classical and quantum information processing applications. We begin by outlining a general formalism for weak-field quantum optics in the Schr{o}dinger picture, and we include a general phenomenological representation of Lindblad decoherence mechanisms. We use this formalism to describe the interaction of a single stationary multilevel atom with one or more propagating classical or quantum laser fields, and we describe in detail several manifestations and applications of electromagnetically induced transparency. In addition to providing a clear description of the nonlinear optical characteristics of electromagnetically transparent systems that lead to ``ultraslow light, we verify that -- in principle -- a multi-particle atomic or molecular system could be used as either a low power optical switch or a quantum phase shifter. However, we demonstrate that the presence of significant dephasing effects destroys the induced transparency, and that increasing the number of particles weakly interacting with the probe field only reduces the nonlinearity further. Finally, a detailed calculation of the relative quantum phase induced by a system of atoms on a superposition of spatially distinct Fock states predicts that a significant quasi-Kerr nonlinearity and a low entropy cannot be simultaneously achieved in the presence of arbitrary spontaneous emission rates. Within our model, we identify the constraints that need to be met for this system to act as a one-qubit and a two-qubit conditional phase gate.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا