No Arabic abstract
Multimodal machine translation (MMT) systems have been shown to outperform their text-only neural machine translation (NMT) counterparts when visual context is available. However, recent studies have also shown that the performance of MMT models is only marginally impacted when the associated image is replaced with an unrelated image or noise, which suggests that the visual context might not be exploited by the model at all. We hypothesize that this might be caused by the nature of the commonly used evaluation benchmark, also known as Multi30K, where the translations of image captions were prepared without actually showing the images to human translators. In this paper, we present a qualitative study that examines the role of datasets in stimulating the leverage of visual modality and we propose methods to highlight the importance of visual signals in the datasets which demonstrate improvements in reliance of models on the source images. Our findings suggest the research on effective MMT architectures is currently impaired by the lack of suitable datasets and careful consideration must be taken in creation of future MMT datasets, for which we also provide useful insights.
Despite the reported success of unsupervised machine translation (MT), the field has yet to examine the conditions under which these methods succeed, and where they fail. We conduct an extensive empirical evaluation of unsupervised MT using dissimilar language pairs, dissimilar domains, diverse datasets, and authentic low-resource languages. We find that performance rapidly deteriorates when source and target corpora are from different domains, and that random word embedding initialization can dramatically affect downstream translation performance. We additionally find that unsupervised MT performance declines when source and target languages use different scripts, and observe very poor performance on authentic low-resource language pairs. We advocate for extensive empirical evaluation of unsupervised MT systems to highlight failure points and encourage continued research on the most promising paradigms.
Neural machine translation has achieved remarkable empirical performance over standard benchmark datasets, yet recent evidence suggests that the models can still fail easily dealing with substandard inputs such as misspelled words, To overcome this issue, we introduce a new encoding heuristic of the input symbols for character-level NLP models: it encodes the shape of each character through the images depicting the letters when printed. We name this new strategy visual embedding and it is expected to improve the robustness of NLP models because humans also process the corpus visually through printed letters, instead of machinery one-hot vectors. Empirically, our method improves models robustness against substandard inputs, even in the test scenario where the models are tested with the noises that are beyond what is available during the training phase.
This paper addresses the problem of simultaneous machine translation (SiMT) by exploring two main concepts: (a) adaptive policies to learn a good trade-off between high translation quality and low latency; and (b) visual information to support this process by providing additional (visual) contextual information which may be available before the textual input is produced. For that, we propose a multimodal approach to simultaneous machine translation using reinforcement learning, with strategies to integrate visual and textual information in both the agent and the environment. We provide an exploration on how different types of visual information and integration strategies affect the quality and latency of simultaneous translation models, and demonstrate that visual cues lead to higher quality while keeping the latency low.
Unsupervised machine translation (MT) has recently achieved impressive results with monolingual corpora only. However, it is still challenging to associate source-target sentences in the latent space. As people speak different languages biologically share similar visual systems, the potential of achieving better alignment through visual content is promising yet under-explored in unsupervised multimodal MT (MMT). In this paper, we investigate how to utilize visual content for disambiguation and promoting latent space alignment in unsupervised MMT. Our model employs multimodal back-translation and features pseudo visual pivoting in which we learn a shared multilingual visual-semantic embedding space and incorporate visually-pivoted captioning as additional weak supervision. The experimental results on the widely used Multi30K dataset show that the proposed model significantly improves over the state-of-the-art methods and generalizes well when the images are not available at the testing time.
Multimodal machine translation (MMT), which mainly focuses on enhancing text-only translation with visual features, has attracted considerable attention from both computer vision and natural language processing communities. Most current MMT models resort to attention mechanism, global context modeling or multimodal joint representation learning to utilize visual features. However, the attention mechanism lacks sufficient semantic interactions between modalities while the other two provide fixed visual context, which is unsuitable for modeling the observed variability when generating translation. To address the above issues, in this paper, we propose a novel Dynamic Context-guided Capsule Network (DCCN) for MMT. Specifically, at each timestep of decoding, we first employ the conventional source-target attention to produce a timestep-specific source-side context vector. Next, DCCN takes this vector as input and uses it to guide the iterative extraction of related visual features via a context-guided dynamic routing mechanism. Particularly, we represent the input image with global and regional visual features, we introduce two parallel DCCNs to model multimodal context vectors with visual features at different granularities. Finally, we obtain two multimodal context vectors, which are fused and incorporated into the decoder for the prediction of the target word. Experimental results on the Multi30K dataset of English-to-German and English-to-French translation demonstrate the superiority of DCCN. Our code is available on https://github.com/DeepLearnXMU/MM-DCCN.