Do you want to publish a course? Click here

Query-Free Attacks on Industry-Grade Face Recognition Systems under Resource Constraints

176   0   0.0 ( 0 )
 Added by Di Tang
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

To launch black-box attacks against a Deep Neural Network (DNN) based Face Recognition (FR) system, one needs to build textit{substitute} models to simulate the target model, so the adversarial examples discovered from substitute models could also mislead the target model. Such textit{transferability} is achieved in recent studies through querying the target model to obtain data for training the substitute models. A real-world target, likes the FR system of law enforcement, however, is less accessible to the adversary. To attack such a system, a substitute model with similar quality as the target model is needed to identify their common defects. This is hard since the adversary often does not have the enough resources to train such a powerful model (hundreds of millions of images and rooms of GPUs are needed to train a commercial FR system). We found in our research, however, that a resource-constrained adversary could still effectively approximate the target models capability to recognize textit{specific} individuals, by training textit{biased} substitute models on additional images of those victims whose identities the attacker want to cover or impersonate. This is made possible by a new property we discovered, called textit{Nearly Local Linearity} (NLL), which models the observation that an ideal DNN model produces the image representations (embeddings) whose distances among themselves truthfully describe the human perception of the differences among the input images. By simulating this property around the victims images, we significantly improve the transferability of black-box impersonation attacks by nearly 50%. Particularly, we successfully attacked a commercial system trained over 20 million images, using 4 million images and 1/5 of the training time but achieving 62% transferability in an impersonation attack and 89% in a dodging attack.

rate research

Read More

Face authentication is now widely used, especially on mobile devices, rather than authentication using a personal identification number or an unlock pattern, due to its convenience. It has thus become a tempting target for attackers using a presentation attack. Traditional presentation attacks use facial images or videos of the victim. Previous work has proven the existence of master faces, i.e., faces that match multiple enrolled templates in face recognition systems, and their existence extends the ability of presentation attacks. In this paper, we perform an extensive study on latent variable evolution (LVE), a method commonly used to generate master faces. We run an LVE algorithm for various scenarios and with more than one database and/or face recognition system to study the properties of the master faces and to understand in which conditions strong master faces could be generated. Moreover, through analysis, we hypothesize that master faces come from some dense areas in the embedding spaces of the face recognition systems. Last but not least, simulated presentation attacks using generated master faces generally preserve the false-matching ability of their original digital forms, thus demonstrating that the existence of master faces poses an actual threat.
136 - Huichen Li , Linyi Li , Xiaojun Xu 2021
Gradient estimation and vector space projection have been studied as two distinct topics. We aim to bridge the gap between the two by investigating how to efficiently estimate gradient based on a projected low-dimensional space. We first provide lower and upper bounds for gradient estimation under both linear and nonlinear projections, and outline checkable sufficient conditions under which one is better than the other. Moreover, we analyze the query complexity for the projection-based gradient estimation and present a sufficient condition for query-efficient estimators. Built upon our theoretic analysis, we propose a novel query-efficient Nonlinear Gradient Projection-based Boundary Blackbox Attack (NonLinear-BA). We conduct extensive experiments on four image datasets: ImageNet, CelebA, CIFAR-10, and MNIST, and show the superiority of the proposed methods compared with the state-of-the-art baselines. In particular, we show that the projection-based boundary blackbox attacks are able to achieve much smaller magnitude of perturbations with 100% attack success rate based on efficient queries. Both linear and nonlinear projections demonstrate their advantages under different conditions. We also evaluate NonLinear-BA against the commercial online API MEGVII Face++, and demonstrate the high blackbox attack performance both quantitatively and qualitatively. The code is publicly available at https://github.com/AI-secure/NonLinear-BA.
Due to its convenience, biometric authentication, especial face authentication, has become increasingly mainstream and thus is now a prime target for attackers. Presentation attacks and face morphing are typical types of attack. Previous research has shown that finger-vein- and fingerprint-based authentication methods are susceptible to wolf attacks, in which a wolf sample matches many enrolled user templates. In this work, we demonstrated that wolf (generic) faces, which we call master faces, can also compromise face recognition systems and that the master face concept can be generalized in some cases. Motivated by recent similar work in the fingerprint domain, we generated high-quality master faces by using the state-of-the-art face generator StyleGAN in a process called latent variable evolution. Experiments demonstrated that even attackers with limited resources using only pre-trained models available on the Internet can initiate master face attacks. The results, in addition to demonstrating performance from the attackers point of view, can also be used to clarify and improve the performance of face recognition systems and harden face authentication systems.
Face recognition has obtained remarkable progress in recent years due to the great improvement of deep convolutional neural networks (CNNs). However, deep CNNs are vulnerable to adversarial examples, which can cause fateful consequences in real-world face recognition applications with security-sensitive purposes. Adversarial attacks are widely studied as they can identify the vulnerability of the models before they are deployed. In this paper, we evaluate the robustness of state-of-the-art face recognition models in the decision-based black-box attack setting, where the attackers have no access to the model parameters and gradients, but can only acquire hard-label predictions by sending queries to the target model. This attack setting is more practical in real-world face recognition systems. To improve the efficiency of previous methods, we propose an evolutionary attack algorithm, which can model the local geometries of the search directions and reduce the dimension of the search space. Extensive experiments demonstrate the effectiveness of the proposed method that induces a minimum perturbation to an input face image with fewer queries. We also apply the proposed method to attack a real-world face recognition system successfully.
Evaluating adversarial robustness amounts to finding the minimum perturbation needed to have an input sample misclassified. The inherent complexity of the underlying optimization requires current gradient-based attacks to be carefully tuned, initialized, and possibly executed for many computationally-demanding iterations, even if specialized to a given perturbation model. In this work, we overcome these limitations by proposing a fast minimum-norm (FMN) attack that works with different $ell_p$-norm perturbation models ($p=0, 1, 2, infty$), is robust to hyperparameter choices, does not require adversarial starting points, and converges within few lightweight steps. It works by iteratively finding the sample misclassified with maximum confidence within an $ell_p$-norm constraint of size $epsilon$, while adapting $epsilon$ to minimize the distance of the current sample to the decision boundary. Extensive experiments show that FMN significantly outperforms existing attacks in terms of convergence speed and computation time, while reporting comparable or even smaller perturbation sizes.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا