No Arabic abstract
Deep neural networks have developed rapidly and have achieved outstanding performance in several tasks, such as image classification and natural language processing. However, recent studies have indicated that both digital and physical adversarial examples can fool neural networks. Face-recognition systems are used in various applications that involve security threats from physical adversarial examples. Herein, we propose a physical adversarial attack with the use of full-face makeup. The presence of makeup on the human face is a reasonable possibility, which possibly increases the imperceptibility of attacks. In our attack framework, we combine the cycle-adversarial generative network (cycle-GAN) and a victimized classifier. The Cycle-GAN is used to generate adversarial makeup, and the architecture of the victimized classifier is VGG 16. Our experimental results show that our attack can effectively overcome manual errors in makeup application, such as color and position-related errors. We also demonstrate that the approaches used to train the models can influence physical attacks; the adversarial perturbations crafted from the pre-trained model are affected by the corresponding training data.
I introduce a very simple method to defend against adversarial examples. The basic idea is to raise the slope of the ReLU function at the test time. Experiments over MNIST and CIFAR-10 datasets demonstrate the effectiveness of the proposed defense against a number of strong attacks in both untargeted and targeted settings. While perhaps not as effective as the state of the art adversarial defenses, this approach can provide insights to understand and mitigate adversarial attacks. It can also be used in conjunction with other defenses.
With further development in the fields of computer vision, network security, natural language processing and so on so forth, deep learning technology gradually exposed certain security risks. The existing deep learning algorithms cannot effectively describe the essential characteristics of data, making the algorithm unable to give the correct result in the face of malicious input. Based on current security threats faced by deep learning, this paper introduces the problem of adversarial examples in deep learning, sorts out the existing attack and defense methods of the black box and white box, and classifies them. It briefly describes the application of some adversarial examples in different scenarios in recent years, compares several defense technologies of adversarial examples, and finally summarizes the problems in this research field and prospects for its future development. This paper introduces the common white box attack methods in detail, and further compares the similarities and differences between the attack of the black and white box. Correspondingly, the author also introduces the defense methods, and analyzes the performance of these methods against the black and white box attack.
In this paper, we propose a new framework to detect adversarial examples motivated by the observations that random components can improve the smoothness of predictors and make it easier to simulate output distribution of deep neural network. With these observations, we propose a novel Bayesian adversarial example detector, short for BATer, to improve the performance of adversarial example detection. In specific, we study the distributional difference of hidden layer output between natural and adversarial examples, and propose to use the randomness of Bayesian neural network (BNN) to simulate hidden layer output distribution and leverage the distribution dispersion to detect adversarial examples. The advantage of BNN is that the output is stochastic while neural networks without random components do not have such characteristics. Empirical results on several benchmark datasets against popular attacks show that the proposed BATer outperforms the state-of-the-art detectors in adversarial example detection.
We introduce two challenging datasets that reliably cause machine learning model performance to substantially degrade. The datasets are collected with a simple adversarial filtration technique to create datasets with limited spurious cues. Our datasets real-world, unmodified examples transfer to various unseen models reliably, demonstrating that computer vision models have shared weaknesses. The first dataset is called ImageNet-A and is like the ImageNet test set, but it is far more challenging for existing models. We also curate an adversarial out-of-distribution detection dataset called ImageNet-O, which is the first out-of-distribution detection dataset created for ImageNet models. On ImageNet-A a DenseNet-121 obtains around 2% accuracy, an accuracy drop of approximately 90%, and its out-of-distribution detection performance on ImageNet-O is near random chance levels. We find that existing data augmentation techniques hardly boost performance, and using other public training datasets provides improvements that are limited. However, we find that improvements to computer vision architectures provide a promising path towards robust models.
Deep neural networks based object detection models have revolutionized computer vision and fueled the development of a wide range of visual recognition applications. However, recent studies have revealed that deep object detectors can be compromised under adversarial attacks, causing a victim detector to detect no object, fake objects, or mislabeled objects. With object detection being used pervasively in many security-critical applications, such as autonomous vehicles and smart cities, we argue that a holistic approach for an in-depth understanding of adversarial attacks and vulnerabilities of deep object detection systems is of utmost importance for the research community to develop robust defense mechanisms. This paper presents a framework for analyzing and evaluating vulnerabilities of the state-of-the-art object detectors under an adversarial lens, aiming to analyze and demystify the attack strategies, adverse effects, and costs, as well as the cross-model and cross-resolution transferability of attacks. Using a set of quantitative metrics, extensive experiments are performed on six representative deep object detectors from three popular families (YOLOv3, SSD, and Faster R-CNN) with two benchmark datasets (PASCAL VOC and MS COCO). We demonstrate that the proposed framework can serve as a methodical benchmark for analyzing adversarial behaviors and risks in real-time object detection systems. We conjecture that this framework can also serve as a tool to assess the security risks and the adversarial robustness of deep object detectors to be deployed in real-world applications.