Do you want to publish a course? Click here

CLASH-VLT: Abell~S1063. Cluster assembly history and spectroscopic catalogue

433   0   0.0 ( 0 )
 Added by Amata Mercurio
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using the CLASH-VLT survey, we assembled an unprecedented sample of 1234 spectroscopically confirmed members in Abell~S1063, finding a dynamically complex structure at z_cl=0.3457 with a velocity dispersion sigma_v=1380 -32 +26 km s^-1. We investigate cluster environmental and dynamical effects by analysing the projected phase-space diagram and the orbits as a function of galaxy spectral properties. We classify cluster galaxies according to the presence and strength of the [OII] emission line, the strength of the H$delta$ absorption line, and colours. We investigate the relationship between the spectral classes of galaxies and their position in the projected phase-space diagram. We analyse separately red and blue galaxy orbits. By correlating the observed positions and velocities with the projected phase-space constructed from simulations, we constrain the accretion redshift of galaxies with different spectral types. Passive galaxies are mainly located in the virialised region, while emission-line galaxies are outside r_200, and are accreted later into the cluster. Emission-lines and post-starbursts show an asymmetric distribution in projected phase-space within r_200, with the first being prominent at Delta_v/sigma <~-1.5$, and the second at Delta_v/ sigma >~ 1.5, suggesting that backsplash galaxies lie at large positive velocities. We find that low-mass passive galaxies are accreted in the cluster before the high-mass ones. This suggests that we observe as passives only the low-mass galaxies accreted early in the cluster as blue galaxies, that had the time to quench their star formation. We also find that red galaxies move on more radial orbits than blue galaxies. This can be explained if infalling galaxies can remain blue moving on tangential orbits.



rate research

Read More

We perform a comprehensive study of the total mass distribution of the galaxy cluster RXCJ2248 ($z=0.348$) with a set of high-precision strong lensing models, which take advantage of extensive spectroscopic information on many multiply lensed systems. In the effort to understand and quantify inherent systematics in parametric strong lensing modelling, we explore a collection of 22 models where we use different samples of multiple image families, parametrizations of the mass distribution and cosmological parameters. As input information for the strong lensing models, we use the CLASH HST imaging data and spectroscopic follow-up observations, carried out with the VIMOS and MUSE spectrographs, to identify bona-fide multiple images. A total of 16 background sources, over the redshift range $1.0-6.1$, are multiply lensed into 47 images, 24 of which are spectroscopically confirmed and belong to 10 individual sources. The cluster total mass distribution and underlying cosmology in the models are optimized by matching the observed positions of the multiple images on the lens plane. We show that with a careful selection of a sample of spectroscopically confirmed multiple images, the best-fit model reproduces their observed positions with a rms of $0.3$ in a fixed flat $Lambda$CDM cosmology, whereas the lack of spectroscopic information lead to biases in the values of the model parameters. Allowing cosmological parameters to vary together with the cluster parameters, we find (at $68%$ confidence level) $Omega_m=0.25^{+0.13}_{-0.16}$ and $w=-1.07^{+0.16}_{-0.42}$ for a flat $Lambda$CDM model, and $Omega_m=0.31^{+0.12}_{-0.13}$ and $Omega_Lambda=0.38^{+0.38}_{-0.27}$ for a universe with $w=-1$ and free curvature. Using toy models mimicking the overall configuration of RXCJ2248, we estimate the impact of the line of sight mass structure on the positional rms to be $0.3pm 0.1$.(ABRIDGED)
We present the first observations of the Frontier Fields Cluster Abell S1063 taken with the newly commissioned Multi Unit Spectroscopic Explorer (MUSE) integral field spectrograph. Because of the relatively large field of view (1 arcmin^2), MUSE is ideal to simultaneously target multiple galaxies in blank and cluster fields over the full optical spectrum. We analysed the four hours of data obtained in the Science Verification phase on this cluster and measured redshifts for 53 galaxies. We confirm the redshift of five cluster galaxies, and determine the redshift of 29 other cluster members. Behind the cluster, we find 17 galaxies at higher redshift, including three previously unknown Lyman-alpha emitters at z>3, and five multiply-lensed galaxies. We report the detection of a new z=4.113 multiply lensed galaxy, with images that are consistent with lensing model predictions derived for the Frontier Fields. We detect C III], C IV, and He II emission in a multiply lensed galaxy at z=3.116, suggesting the likely presence of an active galactic nucleus. We also created narrow-band images from the MUSE datacube to automatically search for additional line emitters corresponding to high-redshift candidates, but we could not identify any significant detections other than those found by visual inspection. With the new redshifts, it will become possible to obtain an accurate mass reconstruction in the core of Abell S1063 through refined strong lensing modelling. Overall, our results illustrate the breadth of scientific topics that can be addressed with a single MUSE pointing. We conclude that MUSE is a very efficient instrument to observe galaxy clusters, enabling their mass modelling, and to perform a blind search for high-redshift galaxies.
Context: The shape of the mass density profiles of cosmological halos informs us of the nature of DM and DM-baryons interactions. Previous estimates of the inner slope of the mass density profiles of clusters of galaxies are in opposition to predictions derived from numerical simulations of CDM. Aims: We determine the inner slope of the DM density profile of a massive cluster of galaxies, Abell S1063 (RXC J2248.7$-$4431) at $z=0.35$, with a dynamical analysis based on an extensive spectroscopic campaign carried out with the VIMOS and MUSE spectrographs at the ESO VLT. This new data set provides an unprecedented sample of 1234 spectroscopic members, 104 of which are located in the cluster core (R < 200 kpc), extracted from the MUSE integral field spectroscopy. The latter also allows the stellar velocity dispersion profile of the brightest cluster galaxy (BCG) to be measured out to 40 kpc. Methods: We used an upgraded version of the MAMPOSSt technique to perform a joint maximum likelihood fit to the velocity dispersion profile of the BCG and to the velocity distribution of cluster member galaxies over a radial range from 1 kpc to the virial radius (~ 2.7 Mpc). Results: We find a value of $gamma_{DM} =0.99 pm 0.04$ for the inner logarithmic slope of the DM density profile after marginalizing over all the other parameters. The newly determined dynamical mass profile is found to be in excellent agreement with the mass density profiles obtained from the independent X-ray hydrostatic analysis based on deep Chandra data, as well as the strong and weak lensing analyses. Our value of gamma_{DM} is in very good agreement with predictions from cosmological CDM simulations. We will extend our analysis to more clusters in future works. If confirmed on a larger cluster sample, our result makes this DM model more appealing than alternative models.
Context. The study of the galaxy stellar mass function (SMF) in relation to the galaxy environment and the stellar mass density profile, rho(r), is a powerful tool to constrain models of galaxy evolution. Aims. We determine the SMF of the z=0.44 cluster of galaxies MACS J1206.2-0847 separately for passive and star-forming (SF) galaxies, in different regions of the cluster, from the center out to approximately 2 virial radii. We also determine rho(r) to compare it to the number density and total mass density profiles. Methods. We use the dataset from the CLASH-VLT survey. Stellar masses are obtained by SED fitting on 5-band photometric data obtained at the Subaru telescope. We identify 1363 cluster members down to a stellar mass of 10^9.5 Msolar. Results. The whole cluster SMF is well fitted by a double Schechter function. The SMFs of cluster SF and passive galaxies are statistically different. The SMF of the SF cluster galaxies does not depend on the environment. The SMF of the passive population has a significantly smaller slope (in absolute value) in the innermost (<0.50 Mpc), highest density cluster region, than in more external, lower density regions. The number ratio of giant/subgiant galaxies is maximum in this innermost region and minimum in the adjacent region, but then gently increases again toward the cluster outskirts. This is also reflected in a decreasing radial trend of the average stellar mass per cluster galaxy. On the other hand, the stellar mass fraction, i.e., the ratio of stellar to total cluster mass, does not show any significant radial trend. Conclusions. Our results appear consistent with a scenario in which SF galaxies evolve into passive galaxies due to density-dependent environmental processes, and eventually get destroyed very near the cluster center to become part of a diffuse intracluster medium.
We aim at constraining the assembly history of clusters by studying the intra cluster light (ICL) properties, estimating its contribution to the fraction of baryons in stars, f*, and understanding possible systematics/bias using different ICL detection techniques. We developed an automated method, GALtoICL, based on the software GALAPAGOS to obtain a refined version of typical BCG+ICL maps. We applied this method to our test case MACS J1206.2-0847, a massive cluster located at z=0.44, that is part of the CLASH sample. Using deep multi-band SUBARU images, we extracted the surface brightness (SB) profile of the BCG+ICL and we studied the ICL morphology, color, and contribution to f* out to R500. We repeated the same analysis using a different definition of the ICL, SBlimit method, i.e. a SB cut-off level, to compare the results. The most peculiar feature of the ICL in MACS1206 is its asymmetric radial distribution, with an excess in the SE direction and extending towards the 2nd brightest cluster galaxy which is a Post Starburst galaxy. This suggests an interaction between the BCG and this galaxy that dates back to t <= 1.5 Gyr. The BCG+ICL stellar content is 8% of M_(*,500) and the (de-) projected baryon fraction in stars is f*=0.0177 (0.0116), in excellent agreement with recent results. The SBlimit method provides systematically higher ICL fractions and this effect is larger at lower SB limits. This is due to the light from the outer envelopes of member galaxies that contaminate the ICL. Though more time consuming, the GALtoICL method provides safer ICL detections that are almost free of this contamination. This is one of the few ICL study at redshift z > 0.3. At completion, the CLASH/VLT program will allow us to extend this analysis to a statistically significant cluster sample spanning a wide redshift range: 0.2<z<0.6.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا