No Arabic abstract
We present the first observations of the Frontier Fields Cluster Abell S1063 taken with the newly commissioned Multi Unit Spectroscopic Explorer (MUSE) integral field spectrograph. Because of the relatively large field of view (1 arcmin^2), MUSE is ideal to simultaneously target multiple galaxies in blank and cluster fields over the full optical spectrum. We analysed the four hours of data obtained in the Science Verification phase on this cluster and measured redshifts for 53 galaxies. We confirm the redshift of five cluster galaxies, and determine the redshift of 29 other cluster members. Behind the cluster, we find 17 galaxies at higher redshift, including three previously unknown Lyman-alpha emitters at z>3, and five multiply-lensed galaxies. We report the detection of a new z=4.113 multiply lensed galaxy, with images that are consistent with lensing model predictions derived for the Frontier Fields. We detect C III], C IV, and He II emission in a multiply lensed galaxy at z=3.116, suggesting the likely presence of an active galactic nucleus. We also created narrow-band images from the MUSE datacube to automatically search for additional line emitters corresponding to high-redshift candidates, but we could not identify any significant detections other than those found by visual inspection. With the new redshifts, it will become possible to obtain an accurate mass reconstruction in the core of Abell S1063 through refined strong lensing modelling. Overall, our results illustrate the breadth of scientific topics that can be addressed with a single MUSE pointing. We conclude that MUSE is a very efficient instrument to observe galaxy clusters, enabling their mass modelling, and to perform a blind search for high-redshift galaxies.
Most sub-mm emission line studies of galaxies to date have targeted sources with known redshifts where the frequencies of the lines are well constrained. Recent blind line scans circumvent the spectroscopic redshift requirement, which could represent a selection bias. Our aim is to detect emission lines present in continuum oriented observations. The detection of such lines provides spectroscopic redshift and yields properties of the galaxies. We perform a search for emission lines in the ALMA observations of five Frontier Fields clusters and assess the reliability of our detection by associating line candidates with detected galaxies in deep near-infrared imaging. We find 26 significant emission lines candidates, with observed line fluxes between 0.2-4.6 Jy km s$^{-1}$ and velocity dispersions (FWHM) of 25-600 km s$^{-1}$. Nine of these candidates lie nearby to near-infrared sources, boosting their reliability; in six cases the observed line frequency and strength are consistent with expectations given the photometric redshift and properties of the galaxy counterparts. We present redshift identifications, magnifications and molecular gas estimates for the galaxies with identified lines. We show that two of these candidates likely originate from starburst galaxies, one of which is a jellyfish galaxy, while another two are consistent with being main sequence galaxies based in their depletion times. This work highlights the degree to which serendipitous emission lines can be discovered in large mosaic continuum observations when deep ancillary data are available. The low number of high-significance line detections, however, confirms that such surveys are not as optimal as blind line scans. We stress that Monte Carlo simulations should be used to assess the line detections significances, since using the negative noise suffers from stochasticity and incurs larger uncertainties.
Using the CLASH-VLT survey, we assembled an unprecedented sample of 1234 spectroscopically confirmed members in Abell~S1063, finding a dynamically complex structure at z_cl=0.3457 with a velocity dispersion sigma_v=1380 -32 +26 km s^-1. We investigate cluster environmental and dynamical effects by analysing the projected phase-space diagram and the orbits as a function of galaxy spectral properties. We classify cluster galaxies according to the presence and strength of the [OII] emission line, the strength of the H$delta$ absorption line, and colours. We investigate the relationship between the spectral classes of galaxies and their position in the projected phase-space diagram. We analyse separately red and blue galaxy orbits. By correlating the observed positions and velocities with the projected phase-space constructed from simulations, we constrain the accretion redshift of galaxies with different spectral types. Passive galaxies are mainly located in the virialised region, while emission-line galaxies are outside r_200, and are accreted later into the cluster. Emission-lines and post-starbursts show an asymmetric distribution in projected phase-space within r_200, with the first being prominent at Delta_v/sigma <~-1.5$, and the second at Delta_v/ sigma >~ 1.5, suggesting that backsplash galaxies lie at large positive velocities. We find that low-mass passive galaxies are accreted in the cluster before the high-mass ones. This suggests that we observe as passives only the low-mass galaxies accreted early in the cluster as blue galaxies, that had the time to quench their star formation. We also find that red galaxies move on more radial orbits than blue galaxies. This can be explained if infalling galaxies can remain blue moving on tangential orbits.
We analyse the Kormendy relations (KRs) of the two Frontier Fields clusters, Abell S1063, at z = 0.348, and MACS J1149.5+2223, at z = 0.542, exploiting very deep Hubble Space Telescope photometry and VLT/MUSE integral field spectroscopy. With this novel dataset, we are able to investigate how the KR parameters depend on the cluster galaxy sample selection and how this affects studies of galaxy evolution based on the KR. We define and compare four different galaxy samples according to: (a) Sersic indices: early-type (ETG), (b) visual inspection: ellipticals, (c) colours: red, (d) spectral properties: passive. The classification is performed for a complete sample of galaxies with m$_{textit{F814W}} le$ 22.5 ABmag (M$_{*}$ $gtrsim 10^{10.0}$ M$_{odot}$). To derive robust galaxy structural parameters, we use two methods: (1) an iterative estimate of structural parameters using images of increasing size, in order to deal with closely separated galaxies and (2) different background estimations, to deal with the Intracluster light contamination. The comparison between the KRs obtained from the different samples suggests that the sample selection could affect the estimate of the best-fitting KR parameters. The KR built with ETGs is fully consistent with the one obtained for ellipticals and passive. On the other hand, the KR slope built on the red sample is only marginally consistent with those obtained with the other samples. We also release the photometric catalogue with structural parameters for the galaxies included in the present analysis.
We present a strong lensing analysis on the massive cluster Abell 370 (A370; z = 0.375), using a combination of deep multi-band Hubble Space Telescope (HST) imaging and Multi-Unit Spectroscopic Explorer (MUSE) spectroscopy. From only two hours of MUSE data, we are able to measure 120 redshifts in the Southern BCG area, including several multiply-imaged lens systems. In total, we increase the number of multiply-imaged systems with a secure redshift from 4 to 15, nine of which are newly discovered. Of these, eight are located at z > 3, greatly extending the redshift range of spectroscopically-confirmed systems over previous work. Using these systems as constraints, we update a parametric lens model of A370, probing the mass distribution from cluster to galaxy scales. Overall, we find that a model with only two cluster- scale dark matter halos (one for each BCG) does a poor job of fitting these new image constraints. Instead, two additional mass clumps -- a central bar of mass located between the BCGs, and another clump located within a crown of galaxies in the Northern part of the cluster field -- provide significant improvements to the fit. Additional physical evidence suggests these clumps are indeed real features of the system, but with relatively few image constraints in the crown region, this claim is difficult to evaluate from a modeling perspective. Additional MUSE observations of A370 covering the entire strong-lensing region will greatly help these efforts, further improving our understanding of this intriguing cluster.
We present an updated strong-lensing analysis of the massive cluster Abell 370 (A370), continuing the work first presented in Lagattuta et al. (2017). In this new analysis, we take advantage of the deeper imaging data from the Hubble Space Telescope (HST) Frontier Fields program, as well as a large spectroscopic mosaic obtained with the Multi-Unit Spectroscopic Explorer (MUSE). Thanks to the extended coverage of this mosaic, we probe the full 3D distribution of galaxies in the field, giving us a unique picture of the extended structure of the cluster and its surroundings. Our final catalog contains 584 redshifts, representing the largest spectroscopic catalog of A370 to date. Constructing the model, we measure a total mass distribution that is quantitatively similar to our previous work -- though to ensure a low rms error in the model fit, we invoke a significantly large external shear term. Using the redshift catalog, we search for other bound groups of galaxies, which may give rise to a more physical interpretation of this shear. We identify three structures in narrow redshift ranges along the line of sight, highlighting possible infalling substructures into the main cluster halo. We also discover additional substructure candidates in low-resolution imaging at larger projected radii. More spectroscopic coverage of these regions (pushing close to the A370 virial radius) and more extended, high-resolution imaging will be required to investigate this possibility, further advancing the analysis of these interesting developments.