Do you want to publish a course? Click here

Supergravity Black Holes, Love Numbers and Harmonic Coordinates

73   0   0.0 ( 0 )
 Added by Christopher Pope
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

To perform realistic tests of theories of gravity, we need to be able to look beyond general relativity and evaluate the consistency of alternative theories with observational data from, especially, gravitational wave detections using, for example, an agnostic Bayesian approach. In this paper we further examine properties of one class of such viable, alternative theories, based on metrics arising from ungauged supergravity. In particular, we examine the massless, neutral, minimally coupled scalar wave equation in a general stationary, axisymmetric background metric such as that of a charged rotating black hole, when the scalar field is either time independent or in the low-frequency, near-zone limit, with a view to calculating the Love numbers of tidal perturbations, and of obtaining harmonic coordinates for the background metric. For a four-parameter family of charged asymptotically flat rotating black hole solutions of ungauged supergravity theory known as STU black holes, which includes Kaluza-Klein black holes and the Kerr-Sen black hole as special cases, we find that all time-independent solutions, and hence the harmonic coordinates of the metrics, are identical to those of the Kerr solution. In the low-frequency limit we find the scalar fields exhibit the same $SL(2,R)$ symmetry as holds in the case of the Kerr solution. We point out extensions of our results to a wider class of metrics, which includes solutions of Einstein-Maxwell-Dilaton theory.



rate research

Read More

The open question of whether a Kerr black hole can become tidally deformed or not has profound implications for fundamental physics and gravitational-wave astronomy. We consider a Kerr black hole embedded in a weak and slowly varying, but otherwise arbitrary, multipolar tidal environment. By solving the static Teukolsky equation for the gauge-invariant Weyl scalar $psi_0$, and by reconstructing the corresponding metric perturbation in an ingoing radiation gauge, for a general harmonic index $ell$, we compute the linear response of a Kerr black hole to the tidal field. This linear response vanishes identically for a Schwarzschild black hole and for an axisymmetric perturbation of a spinning black hole. For a nonaxisymmetric perturbation of a spinning black hole, however, the linear response does not vanish, and it contributes to the Geroch-Hansen multipole moments of the perturbed Kerr geometry. As an application, we compute explicitly the rotational black hole tidal Love numbers that couple the induced quadrupole moments to the quadrupolar tidal fields, to linear order in the black hole spin, and we introduce the corresponding notion of tidal Love tensor. Finally, we show that those induced quadrupole moments are closely related to the well-known physical phenomenon of tidal torquing of a spinning body interacting with a tidal gravitational environment.
We derive the quadratic action for the physical degrees of freedom of massless spin-0, spin-1, and spin-2 perturbations on a Schwarzschild--(A)dS background in arbitrary dimensions. We then use these results to compute the static response of asymptotically flat Schwarzschild black holes to external fields. Our analysis reproduces known facts about black hole Love numbers, in particular that they vanish for all types of perturbation in four spacetime dimensions, but also leads to new results. For instance, we find that neutral Schwarzschild black holes polarize in the presence of an electromagnetic background in any number of spacetime dimensions except four. Moreover, we calculate for the first time black hole Love numbers for vector-type gravitational perturbations in higher dimensions and find that they generically do not vanish. Along the way, we shed some light on an apparent discrepancy between previous results in the literature, and clarify some aspects of the matching between perturbative calculations of static response on a Schwarzschild background and the point-particle effective theory
We transform the metric of an isolated matter source in the multipolar post-Minkowskian approximation from harmonic (de Donder) coordinates to radiative Newman-Unti (NU) coordinates. To linearized order, we obtain the NU metric as a functional of the mass and current multipole moments of the source, valid all-over the exterior region of the source. Imposing appropriate boundary conditions we recover the generalized Bondi-van der Burg-Metzner-Sachs residual symmetry group. To quadratic order, in the case of the mass-quadrupole interaction, we determine the contributions of gravitational-wave tails in the NU metric, and prove that the expansion of the metric in terms of the radius is regular to all orders. The mass and angular momentum aspects, as well as the Bondi shear, are read off from the metric. They are given by the radiative quadrupole moment including the tail terms.
We prove that a generalized Schwarzschild-like ansatz can be consistently employed to construct $d$-dimensional static vacuum black hole solutions in any metric theory of gravity for which the Lagrangian is a scalar invariant constructed from the Riemann tensor and its covariant derivatives of arbitrary order. Namely, we show that, apart from containing two arbitrary functions $a(r)$ and $f(r)$ (essentially, the $g_{tt}$ and $g_{rr}$ components), in any such theory the line-element may admit as a base space {em any} isotropy-irreducible homogeneous space. Technically, this ensures that the field equations generically reduce to two ODEs for $a(r)$ and $f(r)$, and dramatically enlarges the space of black hole solutions and permitted horizon geometries for the considered theories. We then exemplify our results in concrete contexts by constructing solutions in particular theories such as Gauss-Bonnet, quadratic, $F(R)$ and $F$(Lovelock) gravity, and certain conformal gravities.
We study equilibrium configurations of a homogenous ball of matter in a bootstrapped description of gravity which includes a gravitational self-interaction term beyond the Newtonian coupling. Both matter density and pressure are accounted for as sources of the gravitational potential for test particles. Unlike the general relativistic case, no Buchdahl limit is found and the pressure can in principle support a star of arbitrarily large compactness. By defining the horizon as the location where the escape velocity of test particles equals the speed of light, like in Newtonian gravity, we find a minimum value of the compactness for which this occurs. The solutions for the gravitational potential here found could effectively describe the interior of macroscopic black holes in the quantum theory, as well as predict consequent deviations from general relativity in the strong field regime of very compact objects.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا