Do you want to publish a course? Click here

Bootstrapped Newtonian stars and black holes

89   0   0.0 ( 0 )
 Added by Roberto Casadio
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study equilibrium configurations of a homogenous ball of matter in a bootstrapped description of gravity which includes a gravitational self-interaction term beyond the Newtonian coupling. Both matter density and pressure are accounted for as sources of the gravitational potential for test particles. Unlike the general relativistic case, no Buchdahl limit is found and the pressure can in principle support a star of arbitrarily large compactness. By defining the horizon as the location where the escape velocity of test particles equals the speed of light, like in Newtonian gravity, we find a minimum value of the compactness for which this occurs. The solutions for the gravitational potential here found could effectively describe the interior of macroscopic black holes in the quantum theory, as well as predict consequent deviations from general relativity in the strong field regime of very compact objects.



rate research

Read More

We analyse the classical configurations of a bootstrapped Newtonian potential generated by homogeneous spherically symmetric sources in terms of a quantum coherent state. We first compute how the mass and mean wavelength of these solutions scale in terms of the number of quanta in the coherent state. We then note that the classical relation between the ADM mass and the proper mass of the source naturally gives rise to a Generalised Uncertainty Principle for the size of the gravitational radius in the quantum theory. Consistency of the mass and wavelength scalings with this GUP requires the compactness remains at most of order one even for black holes, and the corpuscular predictions are thus recovered, with the quantised horizon area expressed in terms of the number of quanta in the coherent state. Our findings could be useful for analysing the classicalization of gravity in the presence of matter and the avoidance of singularities in the gravitational collapse of compact sources.
We determine the complete space-time metric from the bootstrapped Newtonian potential generated by a static spherically symmetric source in the surrounding vacuum. This metric contains post-Newtonian parameters which can be further used to constrain the complete underlying dynamical theory. For values of the post-Newtonian parameters within experimental bounds, the reconstructed metric appears very close to the Schwarzschild solution of General Relativity in the whole region outside the event horizon. The latter is however larger in size for the same value of the mass compared to the Schwarzschild case.
We prove that a generalized Schwarzschild-like ansatz can be consistently employed to construct $d$-dimensional static vacuum black hole solutions in any metric theory of gravity for which the Lagrangian is a scalar invariant constructed from the Riemann tensor and its covariant derivatives of arbitrary order. Namely, we show that, apart from containing two arbitrary functions $a(r)$ and $f(r)$ (essentially, the $g_{tt}$ and $g_{rr}$ components), in any such theory the line-element may admit as a base space {em any} isotropy-irreducible homogeneous space. Technically, this ensures that the field equations generically reduce to two ODEs for $a(r)$ and $f(r)$, and dramatically enlarges the space of black hole solutions and permitted horizon geometries for the considered theories. We then exemplify our results in concrete contexts by constructing solutions in particular theories such as Gauss-Bonnet, quadratic, $F(R)$ and $F$(Lovelock) gravity, and certain conformal gravities.
122 - F. Canfora , G. Vilasi 2003
A model is proposed to describe a transition from a Schwarzschild black hole of mass $M_{0}$ to a Schwarzschild black hole of mass $M_{1}$ $leq M_{0}$. The basic equations are derived from the non-vacuum Einstein field equations taking a source representing a null scalar field with a nonvanishing trace anomaly. It is shown that the nonvanishing trace anomaly of the scalar field prevents a complete evaporation.
174 - Burkhard Kleihaus , 2015
In the presence of a complex scalar field scalar-tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and ordinary hairy black holes. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا