Do you want to publish a course? Click here

Contest Design with Threshold Objectives

119   0   0.0 ( 0 )
 Added by Abheek Ghosh
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We study contests where the designers objective is an extension of the widely studied objective of maximizing the total output: The designer gets zero marginal utility from a players output if the output of the player is very low or very high. We model this using two objective functions: binary threshold, where a players contribution to the designers utility is 1 if her output is above a certain threshold, and 0 otherwise; and linear threshold, where a players contribution is linear if her output is between a lower and an upper threshold, and becomes constant below the lower and above the upper threshold. For both of these objectives, we study (1) rank-order allocation contests that use only the ranking of the players to assign prizes and (2) general contests that may use the numerical values of the players outputs to assign prizes. We characterize the optimal contests that maximize the designers objective and indicate techniques to efficiently compute them. We also prove that for the linear threshold objective, a contest that distributes the prize equally among a fixed number of top-ranked players offers a factor-2 approximation to the optimal rank-order allocation contest.



rate research

Read More

We study the problem of repeatedly auctioning off an item to one of $k$ bidders where: a) bidders have a per-round individual rationality constraint, b) bidders may leave the mechanism at any point, and c) the bidders valuations are adversarially chosen (the prior-free setting). Without these constraints, the auctioneer can run a second-price auction to sell the business and receive the second highest total value for the entire stream of items. We show that under these constraints, the auctioneer can attain a constant fraction of the sell the business benchmark, but no more than $2/e$ of this benchmark. In the course of doing so, we design mechanisms for a single bidder problem of independent interest: how should you repeatedly sell an item to a (per-round IR) buyer with adversarial valuations if you know their total value over all rounds is $V$ but not how their value changes over time? We demonstrate a mechanism that achieves revenue $V/e$ and show that this is tight.
We define the notion of Bayes correlated Wardrop equilibrium for general nonatomic games with anonymous players and incomplete information. Bayes correlated Wardrop equilibria describe the set of equilibrium outcomes when a mediator, such as a traffic information system, provides information to the players. We relate this notion to Bayes Wardrop equilibrium. Then, we provide conditions -- existence of a convex potential and complete information -- under which mediation does not improve equilibrium outcomes. We then study full implementation and, finally, information design in anonymous games with a finite set of players, when the number of players tends to infinity.
121 - Dengji Zhao 2021
Mechanism design has traditionally assumed that the set of participants are fixed and known to the mechanism (the market owner) in advance. However, in practice, the market owner can only directly reach a small number of participants (her neighbours). Hence the owner often needs costly promotions to recruit more participants in order to get desirable outcomes such as social welfare or revenue maximization. In this paper, we propose to incentivize existing participants to invite their neighbours to attract more participants. However, they would not invite each other if they are competitors. We discuss how to utilize the conflict of interest between the participants to incentivize them to invite each other to form larger markets. We will highlight the early solutions and open the floor for discussing the fundamental open questions in the settings of auctions, coalitional games, matching and voting.
We study turn-based stochastic zero-sum games with lexicographic preferences over reachability and safety objectives. Stochastic games are standard models in control, verification, and synthesis of stochastic reactive systems that exhibit both randomness as well as angelic and demonic non-determinism. Lexicographic order allows to consider multiple objectives with a strict preference order over the satisfaction of the objectives. To the best of our knowledge, stochastic games with lexicographic objectives have not been studied before. We establish determinacy of such games and present strategy and computational complexity results. For strategy complexity, we show that lexicographically optimal strategies exist that are deterministic and memory is only required to remember the already satisfied and violated objectives. For a constant number of objectives, we show that the relevant decision problem is in NP $cap$ coNP, matching the current known bound for single objectives; and in general the decision problem is PSPACE-hard and can be solved in NEXPTIME $cap$ coNEXPTIME. We present an algorithm that computes the lexicographically optimal strategies via a reduction to computation of optimal strategies in a sequence of single-objectives games. We have implemented our algorithm and report experimental results on various case studies.
Second-price auctions with deposits are frequently used in blockchain environments. An auction takes place on-chain: bidders deposit an amount that fully covers their bid (but possibly exceeds it) in a smart contract. The deposit is used as insurance against bidders not honoring their bid if they win. The deposit, but not the bid, is publicly observed during the bidding phase of the auction. The visibility of deposits can fundamentally change the strategic structure of the auction if bidding happens sequentially: Bidding is costly since deposit are costly to make. Thus, deposits can be used as a costly signal for a high valuation. This is the source of multiple inefficiencies: To engage in costly signalling, a bidder who bids first and has a high valuation will generally over-deposit in equilibrium, i.e.~deposit more than he will bid. If high valuations are likely there can, moreover, be entry deterrence through high deposits: a bidder who bids first can deter subsequent bidders from entering the auction. Pooling can happen in equilibrium, where bidders of different valuations deposit the same amount. The auction fails to allocate the item to the bidder with the highest valuation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا