Do you want to publish a course? Click here

Unstable Cosmic Neutrino Capture

149   0   0.0 ( 0 )
 Added by Kensuke Akita
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We forecast constraints on neutrino decay via capture of the Cosmic Neutrino Background on tritium, with emphasis on the PTOLEMY-type experiment. In particular, in the case of invisible neutrino decay into lighter neutrinos in the Standard Model and invisible particles, we can constrain not only the neutrino lifetime but also the masses of the invisible particles. For this purpose, we also formulate the energy spectra of the lighter neutrinos produced by 2-body and 3-body decays, and those of the electrons emitted in the process of the detection of the lighter neutrinos.



rate research

Read More

We explore the potential of measurements of cosmological effects, such as neutrino spectral distortions from the neutrino decoupling and neutrino clustering in our Galaxy, via cosmic neutrino capture on tritium. We compute the precise capture rates of each neutrino species including such cosmological effects to probe them. These precise estimates of capture rates are also important in that the would-be deviation of the estimated capture rate could suggest new neutrino physics and/or a non-standard evolution of the universe. In addition, we discuss the precise differences between the capture rates of Dirac and Majorana neutrinos for each species, the required energy resolutions to detect each neutrino species and the method of reconstruction of the spectrum of cosmic neutrinos via the spectrum of emitted electrons, with emphasis on the PTOLEMY experiment.
We consider theories in which the generation of neutrino masses is associated with the breaking of an approximate global lepton number symmetry. In such a scenario the spectrum of light states includes the Majoron, the pseudo-Nambu Goldstone boson associated with the breaking of the global symmetry. For a broad range of parameters, the Majoron decays to neutrinos at late times, after the cosmic neutrinos have decoupled from the thermal bath, resulting in a secondary contribution to the cosmic neutrino background. We determine the current bounds on this scenario, and explore the possibility of directly detecting this secondary cosmic neutrino background in experiments based on neutrino capture on nuclei. For Majoron masses in the eV range or below, the neutrino flux from these decays can be comparable to that from the primary cosmic neutrino background, making it a promising target for direct detection experiments. The neutrinos from Majoron decay are redshifted by the cosmic expansion, and exhibit a characteristic energy spectrum that depends on both the Majoron mass and its lifetime. For Majoron lifetimes of order the age of the universe or larger, there is also a monochromatic contribution to the neutrino flux from Majoron decays in the Milky Way that can be comparable to the diffuse extragalactic flux. We find that for Majoron masses in the eV range, direct detection experiments based on neutrino capture on tritium, such as PTOLEMY, will be sensitive to this scenario with 100 gram-years of data. In the event of a signal, the galactic and extragalactic components can be distinguished on the basis of their distinct energy distributions, and also by using directional information obtained by polarizing the target nuclei.
We review sterile neutrinos as possible Dark Matter candidates. After a short summary on the role of neutrinos in cosmology and particle physics, we give a comprehensive overview of the current status of the research on sterile neutrino Dark Matter. First we discuss the motivation and limits obtained through astrophysical observations. Second, we review different mechanisms of how sterile neutrino Dark Matter could have been produced in the early universe. Finally, we outline a selection of future laboratory searches for keV-scale sterile neutrinos, highlighting their experimental challenges and discovery potential.
Existing searches for cosmic axions relics have relied heavily on the axion being non-relativistic and making up dark matter. However, light axions can be copiously produced in the early Universe and remain relativistic today, thereby constituting a Cosmic $textit{axion}$ Background (C$a$B). As prototypical examples of axion sources, we consider thermal production, dark-matter decay, parametric resonance, and topological defect decay. Each of these has a characteristic frequency spectrum that can be searched for in axion direct detection experiments. We focus on the axion-photon coupling and study the sensitivity of current and futu
73 - Shun Zhou 2020
In this paper, we propose a hexagonal description for the flavor composition of ultrahigh-energy (UHE) neutrinos and antineutrinos, which will hopefully be determined at the future large neutrino telescopes. With such a geometrical description, we are able to clearly separate the individual flavor composition of neutrinos from that of antineutrinos in one single regular hexagon, which can be regarded as a natural generalization of the widely-used ternary plot. For illustration, we consider the $pp$ or $pgamma$ collisions as the dominant production mechanism for UHE neutrinos and antineutrinos in the cosmic accelerator, and investigate how neutrino oscillations in the standard picture and in the presence of Lindblad decoherence could change the flavor composition of neutrinos and antineutrinos at neutrino telescopes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا