Do you want to publish a course? Click here

Two-dimensional Cobalt Telluride as Piezo-tribogenerator

50   0   0.0 ( 0 )
 Added by Chandra Tiwary Dr
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Two-dimensional (2D) materials have been shown to be efficient in energy harvesting. Here, we report utilization of waste heat to generate electricity via combined piezoelectric and triboelectric property of 2D Cobalt Telluride (CoTe2). The piezo-triboelectric nanogenerator (PTNG) produced an open-circuit voltage of ~5V under 1N force and the effect of temperature in the 305-363 K range shows a four-fold energy conversion efficiency improvement. The 2D piezo-tribogenerator shows excellent characteristics with a maximum voltage of ~10V, fast response time and high responsivity. Density functional theory was used to gain further insights and validation of the experimental results. Our results could lead to energy harvesting approaches using 2D materials from various thermal sources and dissipated waste heat from electronic devices.

rate research

Read More

We introduce herein the advanced application of low pressure plasma procedures for the development of piezo and triboelectric mode I hybrid nanogenerators. Thus, plasma assisted deposition and functionalization methods are presented as key enabling technologies for the nanoscale design of ZnO polycrystalline shells, the formation of conducting metallic cores in core@shell nanowires, and for the solventless surface modification of polymeric coatings and matrixes. We show how the perfluorinated chains grafting of PDMS provides a reliable approach to increase the hydrophobicity and surface charges at the same time that keeping the PDMS mechanical properties. In this way, we produce efficient Ag/ZnO convoluted piezoelectric nanogenerators supported on flexible substrates and embedded in PDMS compatible with a contact separation triboelectric architecture. Factors like crystal-line texture, ZnO thickness, nanowires aspect ratio, and surface chemical modification of the PDMS are explored to optimize the power output of the nanogenerators aimed for harvesting from low-frequency vibrations. Just by manual trigger-ing, the hybrid device can charge a microcapacitor to switch on an array of color LEDs. Outstandingly, this simple three-layer architecture allows for harvesting vibration energy in a wide bandwidth, thus, we show the performance characteristics for frequencies between 1 Hz to 50 Hz and demonstrate the successful activation of the system up to ca. 800 Hz
The scalable and high-efficiency production of two-dimensional (2D) materials is a prerequisite to their commercial use. Currently, only graphene and graphene oxide can be produced on a ton scale, and the inability to produce other 2D materials on such a large scale hinders their technological applications. Here we report a grinding exfoliation method that uses micro-particles as force intermediates to resolve applied compressive forces into a multitude of small shear forces, inducing the highly-efficient exfoliation of layer materials. The method, referred to as intermediate-assisted grinding exfoliation (iMAGE), can be used for the large-scale production of many 2D materials. As an example, we have exfoliated bulk h-BN into 2D h-BN with large flake sizes, high quality and structural integrity, with a high exfoliation yield of 67%, a high production rate of 0.3 g h-1 and a low energy consumption of 3.01x10^6 J g-1. The production rate and energy consumption are one to two orders of magnitude better than previous results. Besides h-BN, this iMAGE technology has been used to exfoliate various layer materials such as graphite, black phosphorus, transition metal dichalcogenides, and metal oxides, proving its universality. Molybdenite concentrate, a natural low-cost and abundant mineral, was used as a demo for the large-scale exfoliation production of 2D MoS2 flakes. Our work indicates the huge potential of the iMAGE method to produce large amounts of various 2D materials, which paves the way for their commercial application.
Synaptic devices with linear high-speed switching can accelerate learning in artificial neural networks (ANNs) embodied in hardware. Conventional resistive memories however suffer from high write noise and asymmetric conductance tuning, preventing parallel programming of ANN arrays as needed to surpass conventional computing efficiency. Electrochemical random-access memories (ECRAMs), where resistive switching occurs by ion insertion into a redox-active channel address these challenges due to their linear switching and low noise. ECRAMs using two-dimensional (2D) materials and metal oxides suffer from slow ion kinetics, whereas organic ECRAMs enable high-speed operation but face significant challenges towards on-chip integration due to poor temperature stability of polymers. Here, we demonstrate ECRAMs using 2D titanium carbide (Ti3C2Tx) MXene that combines the high speed of organics and the integration compatibility of inorganic materials in a single high-performance device. Our ECRAMs combine the speed, linearity, write noise, switching energy and endurance metrics essential for parallel acceleration of ANNs, and importantly, they are stable after heat treatment needed for back-end-of-line integration with Si electronics. The high speed and performance of these ECRAMs introduces MXenes, a large family of 2D carbides and nitrides with more than 30 compositions synthesized to date, as very promising candidates for devices operating at the nexus of electrochemistry and electronics.
Cylindrical magnetic nanowires with large transversal magnetocrystalline anisotropy have been shown to sustain non-trivial magnetic configurations resulting from the interplay of spatial confinement, exchange, and anisotropies. Exploiting these peculiar 3D spin configurations and their solitonic inhomogeneities are prospected to improve magnetization switching in future spintronics, such as power-saving magnetic memory and logic applications. Here we employ holographic vector field electron tomography to reconstruct the remanent magnetic states in CoNi nanowires with 10 nm resolution in 3D, with a particular focus on domain walls between remanent states and ubiquitous real-structure effects stemming from irregular morphology and anisotropy variations. By tuning the applied magnetic field direction, both longitudinal and transverse multi-vortex states of different chiralities and peculiar 3D features such as shifted vortex cores are stabilized. The chiral domain wall between the longitudinal vortices of opposite chiralities exhibits a complex 3D shape characterized by a push out of the central vortex line and a gain in exchange and anisotropy energy. A similar complex 3D texture, including bent vortex lines, forms at the domain boundary between transverse-vortex states and longitudinal configurations. Micromagnetic simulations allow an understanding of the origin of the observed complex magnetic states.
163 - Michael A. Mastro 2020
The implementation of hyperbolic metamaterials as component in optical waveguides, semiconductor light emitters and solar cells has been limited by the inherent loss in the metallic layers. The features of a hyperbolic metamaterial arise by the presence of alternating metal and a dielectric layers. This work proposes that the deleterious loss characteristic of metal-based hyperbolic metamaterials can be minimized by employing a III-nitride superlattice wherein a two-dimensional electron gas (2DEG) functions as the metallic layer.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا