No Arabic abstract
We examine the consequences of, and apply, the formalism developed in Terquem (2021) for calculating the rate $D_R$ at which energy is exchanged between fast tides and convection. In this previous work, $D_R$ (which is proportional to the gradient of the convective velocity) was assumed to be positive in order to dissipate the tidal energy. Here we argue that, even if energy is intermittently transferred from convection to the tides, it must ultimately return to the convective flow and transported efficiently to the stellar surface on the convective timescale. This is consistent with, but much less restrictive than, enforcing $D_R>0$. Our principle result is a calculation of the circularization timescale of late-type binaries, taking into account the full time evolution of the stellar structure. We find that circularization is very efficient during the PMS phase, inefficient during the MS, and once again efficient when the star approaches the RGB. These results are in much better agreement with observations than earlier theories. We also apply our formalism to hot Jupiters, and find that tidal dissipation in a Jupiter mass planet yields a circularization timescale of 1 Gyr for an orbital period of 3 d, also in good overall agreement with observations. The approach here is novel, and the apparent success of the theory in resolving longstanding timescale puzzles is compelling.
Binary stars are places of complex stellar interactions. While all binaries are in principle converging towards a state of circularization, many eccentric systems are found even in advanced stellar phases. In this work we discuss the sample of binaries with a red-giant component, discovered from observations of the NASA Kepler space mission. We first discuss which effects and features of tidal interactions are detectable in photometry, spectroscopy and the seismic analysis. In a second step, the sample of binary systems observed with Kepler, is compared to the well studied sample of Verbunt & Phinney (1995, hereafter VP95). We find that this study of circularization of systems hosting evolving red-giant stars with deep convective envelopes is also well applicable to the red-giant binaries in the sample of Kepler stars.
We present the direct imaging discovery of an extrasolar planet, or possible low-mass brown dwarf, at a projected separation of 55 +/- 2 AU (1.058 +/- 0.007 arcsec) from the B9-type star Kappa And. The planet was detected with Subaru/HiCIAO during the SEEDS survey, and confirmed as a bound companion via common proper motion measurements. Observed near-infrared magnitudes of J = 16.3 +/- 0.3, H = 15.2 +/- 0.2, Ks = 14.6 +/- 0.4, and L = 13.12 +/- 0.09 indicate a temperature of ~1700 K. The galactic kinematics of the host star are consistent with membership in the Columba association, implying a corresponding age of 30 +20 -10 Myr. The system age, combined with the companion photometry, points to a model-dependent companion mass ~12.8 MJup. The host stars estimated mass of 2.4-2.5 Msun places it among the most massive stars ever known to harbor an extrasolar planet or low-mass brown dwarf. While the mass of the companion is close to the deuterium burning limit, its mass ratio, orbital separation, and likely planet-like formation scenario imply that it may be best defined as a `Super-Jupiter with properties similar to other recently discovered companions to massive stars.
Aluminium plays a key role in studies of the chemical enrichment of the Galaxy and of globular clusters. However, strong deviations from LTE (non-LTE) are known to significantly affect the inferred abundances in giant and metal-poor stars. We present NLTE modeling of aluminium using recent and accurate atomic data, in particular utilizing new transition rates for collisions with hydrogen atoms, without the need for any astrophysically calibrated parameters. For the first time, we perform 3D NLTE modeling of aluminium lines in the solar spectrum. We also compute and make available extensive grids of abundance corrections for lines in the optical and near-infrared using one-dimensional model atmospheres, and apply grids of precomputed departure coefficients to direct line synthesis for a set of benchmark stars with accurately known stellar parameters. Our 3D NLTE modeling of the solar spectrum reproduces observed center-to-limb variations in the solar spectrum of the 7835 {AA} line as well as the mid-infrared photospheric emission line at 12.33 micron. We infer a 3D NLTE solar photospheric abundance of A(Al) = 6.43+-0.03, in exact agreement with the meteoritic abundance. We find that abundance corrections vary rapidly with stellar parameters; for the 3961 {AA} resonance line, corrections are positive and may be as large as +1 dex, while corrections for subordinate lines generally have positive sign for warm stars but negative for cool stars. Our modeling reproduces the observed line profiles of benchmark K-giants, and we find abundance corrections as large as -0.3 dex for Arcturus. Our analyses of four metal-poor benchmark stars yield consistent abundances between the 3961 {AA} resonance line and lines in the UV, optical and near-infrared regions. Finally, we discuss implications for the galactic chemical evolution of aluminium.
Aims: Our goal is to investigate how the strength of episodic accretion bursts depends on eccentricity. Methods: We investigate the binary trigger hypothesis in longer-period (>20yr) binaries by carrying out three-dimensional magnetohydrodynamical (MHD) simulations of the formation of low-mass binary stars down to final separations of $sim$10$au$, including the effects of gas turbulence and magnetic fields. We ran two simulations with an initial turbulent gas core of one solar mass each and two different initial turbulent Mach numbers, M = 0.1 and M=0.2, for 6500yr after protostar formation. Results: We observe bursts of accretion at periastron during the early stages when the eccentricity of the binary system is still high. We find that this correlation between bursts of accretion and passing periastron breaks down at later stages because of the gradual circularisation of the orbits. For eccentricities greater than e=0.2, we observe episodic accretion triggered near periastron. However, we do not find any strong correlation between the strength of episodic accretion and eccentricity. The strength of accretion is defined as the ratio of the burst accretion rate to the quiescent accretion rate.We determine that accretion events are likely triggered by torques between the rotation of the circumstellar disc and the approaching binary stars. We compare our results with observational data of episodic accretion in short-period binaries and find good agreement between our simulations and the observations. Conclusions: We conclude that episodic accretion is a universal mechanism operating in eccentric young binary-star systems, independent of separation, and it should be observable in long-period binaries as well as in short-period binaries. Nevertheless, the strength depends on the torques and hence the separation at periastron.
In this work we quantify the effect of an unresolved companion star on the derived stellar parameters of the primary star if a blended spectrum is fit assuming the star is single. Fitting tools that determine stellar parameters from spectra typically fit for a single star, but we know that up to half of all exoplanet host stars may have one or more companion stars. We use high-resolution spectra of planet host stars in the Kepler field from the California-Kepler Survey to create simulated binaries; we select 8 stellar pairs and vary the contribution of the secondary star, then determine stellar parameters with SpecMatch-Emp and compare them to the parameters derived for the primary star alone. We find that in most cases the effective temperature, surface gravity, metallicity, and stellar radius derived from the composite spectrum are within 2-3 $sigma$ of the values determined from the unblended spectrum, but the deviations depend on the properties of the two stars. Relatively bright companion stars that are similar to the primary star have the largest effect on the derived parameters; in these cases the stellar radii can be overestimated by up to 60%. We find that metallicities are generally underestimated, with values up to 8 times smaller than the typical uncertainty in [Fe/H]. Our study shows that follow-up observations are necessary to detect or set limits on stellar companions of planetary host stars so that stellar (and planet) parameters are as accurate as possible.