Do you want to publish a course? Click here

Image In painting Applied to Art Completing Eschers Print Gallery

105   0   0.0 ( 0 )
 Added by Lucia Cipolina-Kun
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This extended abstract presents the first stages of a research on in-painting suited for art reconstruction. We introduce M.C Eschers Print Gallery lithography as a use case example. This artwork presents a void on its center and additionally, it follows a challenging mathematical structure that needs to be preserved by the in-painting method. We present our work so far and our future line of research.

rate research

Read More

In this paper, we explore methods of complicating self-supervised tasks for representation learning. That is, we do severe damage to data and encourage a network to recover them. First, we complicate each of three powerful self-supervised task candidates: jigsaw puzzle, inpainting, and colorization. In addition, we introduce a novel complicated self-supervised task called Completing damaged jigsaw puzzles which is puzzles with one piece missing and the other pieces without color. We train a convolutional neural network not only to solve the puzzles, but also generate the missing content and colorize the puzzles. The recovery of the aforementioned damage pushes the network to obtain robust and general-purpose representations. We demonstrate that complicating the self-supervised tasks improves their origin
In the Art Gallery Problem we are given a polygon $Psubset [0,L]^2$ on $n$ vertices and a number $k$. We want to find a guard set $G$ of size $k$, such that each point in $P$ is seen by a guard in $G$. Formally, a guard $g$ sees a point $p in P$ if the line segment $pg$ is fully contained inside the polygon $P$. The history and practical findings indicate that irrational coordinates are a very rare phenomenon. We give a theoretical explanation. Next to worst case analysis, Smoothed Analysis gained popularity to explain the practical performance of algorithms, even if they perform badly in the worst case. The idea is to study the expected performance on small perturbations of the worst input. The performance is measured in terms of the magnitude $delta$ of the perturbation and the input size. We consider four different models of perturbation. We show that the expected number of bits to describe optimal guard positions per guard is logarithmic in the input and the magnitude of the perturbation. This shows from a theoretical perspective that rational guards with small bit-complexity are typical. Note that describing the guard position is the bottleneck to show NP-membership. The significance of our results is that algebraic methods are not needed to solve the Art Gallery Problem in typical instances. This is the first time an $existsmathbb{R}$-complete problem was analyzed by Smoothed Analysis.
Microorganisms play a vital role in human life. Therefore, microorganism detection is of great significance to human beings. However, the traditional manual microscopic detection methods have the disadvantages of long detection cycle, low detection accuracy in large orders, and great difficulty in detecting uncommon microorganisms. Therefore, it is meaningful to apply computer image analysis technology to the field of microorganism detection. Computer image analysis can realize high-precision and high-efficiency detection of microorganisms. In this review, first,we analyse the existing microorganism detection methods in chronological order, from traditional image processing and traditional machine learning to deep learning methods. Then, we analyze and summarize these existing methods and introduce some potential methods, including visual transformers. In the end, the future development direction and challenges of microorganism detection are discussed. In general, we have summarized 137 related technical papers from 1985 to the present. This review will help researchers have a more comprehensive understanding of the development process, research status, and future trends in the field of microorganism detection and provide a reference for researchers in other fields.
Unsupervised image-to-image translation methods learn to map images in a given class to an analogous image in a different class, drawing on unstructured (non-registered) datasets of images. While remarkably successful, current methods require access to many images in both source and destination classes at training time. We argue this greatly limits their use. Drawing inspiration from the human capability of picking up the essence of a novel object from a small number of examples and generalizing from there, we seek a few-shot, unsupervised image-to-image translation algorithm that works on previously unseen target classes that are specified, at test time, only by a few example images. Our model achieves this few-shot generation capability by coupling an adversarial training scheme with a novel network design. Through extensive experimental validation and comparisons to several baseline methods on benchmark datasets, we verify the effectiveness of the proposed framework. Our implementation and datasets are available at https://github.com/NVlabs/FUNIT .
Unpaired Image-to-image Translation is a new rising and challenging vision problem that aims to learn a mapping between unaligned image pairs in diverse domains. Recent advances in this field like MUNIT and DRIT mainly focus on disentangling content and style/attribute from a given image first, then directly adopting the global style to guide the model to synthesize new domain images. However, this kind of approaches severely incurs contradiction if the target domain images are content-rich with multiple discrepant objects. In this paper, we present a simple yet effective instance-aware image-to-image translation approach (INIT), which employs the fine-grained local (instance) and global styles to the target image spatially. The proposed INIT exhibits three import advantages: (1) the instance-level objective loss can help learn a more accurate reconstruction and incorporate diverse attributes of objects; (2) the styles used for target domain of local/global areas are from corresponding spatial regions in source domain, which intuitively is a more reasonable mapping; (3) the joint training process can benefit both fine and coarse granularity and incorporates instance information to improve the quality of global translation. We also collect a large-scale benchmark for the new instance-level translation task. We observe that our synthetic images can even benefit real-world vision tasks like generic object detection.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا