Do you want to publish a course? Click here

Dynamical ejecta of neutron star mergers with nucleonic weak processes I: Nucleosynthesis

78   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a coherent study of the impact of neutrino interactions on the r-process element nucleosynthesis and the heating rate produced by the radioactive elements synthesised in the dynamical ejecta of neutron star-neutron star (NS-NS) mergers. We have studied the material ejected from four NS-NS merger systems based on the hydrodynamical simulations of Ardevol-Pulpillo et al. (2019) which handle neutrino effects in an elaborate way by including neutrino equilibration with matter in optically thick regions and re-absorption in optically thin regions. We find that the neutron richness of the dynamical ejecta is significantly affected by the neutrinos emitted by the post-merger remnant, in particular when compared to a case neglecting all neutrino interactions. Our nucleosynthesis results show that a solar-like distribution of r-process elements with mass numbers $A gtrsim 90$ is produced, including a significant enrichment in Sr and a reduced production of actinides compared to simulations without inclusion of the nucleonic weak processes. The composition of the ejected matter as well as the corresponding rate of radioactive decay heating are found to be rather independent of the system mass asymmetry and the adopted equation of state. This approximate degeneracy in abundance pattern and heating rates can be favourable for extracting the ejecta properties from kilonova observations. Part II of this work will study the light curve produced by the dynamical ejecta of our four NS merger models.



rate research

Read More

Heavy elements like gold, platinum or uranium are produced in the r-process, which needs neutron-rich and explosive environments. Neutron star mergers are a promising candidate for an r-process site. They exhibit three different channels for matter ejection fulfilling these conditions: dynamic ejecta due to tidal torques, neutrino-driven winds and evaporating matter from the accretion disk. We present a first study of the integrated nucleosynthesis for a neutrino-driven wind from a neutron star merger with a hyper-massive neutron star. Trajectories from a recent hydrodynamical simulation are divided into four different angle regions and post-processed with a reaction network. We find that the electron fraction varies around $Y_e approx 0.1 - 0.4$, but its distribution differs for every angle of ejection. Hence, the wind ejecta do not undergo a robust r-process, but rather possess distinct nucleosynthesis yields depending on the angle range. Compared to the dynamic ejecta, a smaller amount of neutron-rich matter gets unbound, but the production of lighter heavy elements with $A lesssim 130$ in the neutrino-driven wind can complement the strong r-process of the dynamic ejecta.
Weak reactions are critical for the neutron richness of the matter dynamically ejected after the merger of two neutron stars. The neutron richness, defined by the electron fraction (Ye), determines which heavy elements are produced by the r-process and thus directly impacts the kilonova light curve. In this work, we have performed a systematic and detailed post-processing study of the impact of weak reactions on the distribution of the electron fraction and of the entropy on the dynamic ejecta obtained from an equal mass neutron star binary merger simulated in full general relativity and with microscopic equation of state. Previous investigations indicated that shocks increase Ye, however our results show that shocks can also decrease Ye, depending on their thermodynamical conditions. Moreover, we have found that neutrino absorption are key and need to be considered in future simulations. We also demonstrated that the angular dependence of the neutrino luminosity and the spatial distribution of the ejecta can lead to significant difference in the electron fraction distribution. In addition to the detailed study of the Ye evolution and its dependences, we have performed nucleosynthesis calculations. They clearly point to the necessity of improving the neutrino treatment in current simulations to be able to predict the contribution of neutron star mergers to the chemical history of the universe and to reliable calculate their kilonova light curves.
We present fitting formulae for the dynamical ejecta properties and remnant disk masses from a large sample of numerical relativity simulations. The considered data include some of the latest simulations with microphysical nuclear equations of state (EOS) and neutrino transport as well as other results with polytropic EOS available in the literature. Our analysis indicates that the broad features of the dynamical ejecta and disk properties can be captured by fitting expressions that depend on mass ratio and reduced tidal parameter. The comparative analysis of literature data shows that microphysics and neutrino absorption have a significant impact on the dynamical ejecta properties. Microphysical nuclear equations of state lead to average velocities smaller than polytropic EOS, while including neutrino absorption results in larger average ejecta masses and electron fractions. Hence, microphysics and neutrino transport are necessary to obtain quantitative models of the ejecta in terms of the binary parameters.
We investigate beta-interactions of free nucleons and their impact on the electron fraction (Y_e) and r-process nucleosynthesis in ejecta characteristic of binary neutron star mergers (BNSMs). For that we employ trajectories from a relativistic BNSM model to represent the density-temperature evolutions in our parametric study. In the high-density environment, positron captures decrease the neutron richness at the high temperatures predicted by the hydrodynamic simulation. Circumventing the complexities of modelling three-dimensional neutrino transport, (anti)neutrino captures are parameterized in terms of prescribed neutrino luminosities and mean energies, guided by published results and assumed as constant in time. Depending sensitively on the adopted neutrino-antineutrino luminosity ratio, neutrino processes increase Y_e to values between 0.25 and 0.40, still allowing for a successful r-process compatible with the observed solar abundance distribution and a significant fraction of the ejecta consisting of r-process nuclei. If the electron neutrino luminosities and mean energies are relatively large compared to the antineutrino properties, the mean Y_e might reach values >0.40 so that neutrino captures seriously compromise the success of the r-process. In this case, the r-abundances remain compatible with the solar distribution, but the total amount of ejected r-material is reduced to a few percent, because the production of iron-peak elements is favored. Proper neutrino physics, in particular also neutrino absorption, have to be included in BNSM simulations before final conclusions can be drawn concerning r-processing in this environment and concerning observational consequences like kilonovae, whose peak brightness and color temperature are sensitive to the composition-dependent opacity of the ejecta.
We present new numerical relativity results of neutron star mergers with chirp mass $1.188M_odot$ and mass ratios $q=1.67$ and $q=1.8$ using finite-temperature equations of state (EOS), approximate neutrino transport and a subgrid model for magnetohydrodynamics-induced turbulent viscosity. The EOS are compatible with nuclear and astrophysical constraints and include a new microphysical model derived from ab-initio calculations based on the Brueckner-Hartree-Fock approach. We report for the first time evidence for accretion-induced prompt collapse in high-mass-ratio mergers, in which the tidal disruption of the companion and its accretion onto the primary star determine prompt black hole formation. As a result of the tidal disruption, an accretion disc of neutron-rich and cold matter forms with baryon masses ${sim}0.15M_odot$, and it is significantly heavier than the remnant discs in equal-masses prompt collapse mergers. Massive dynamical ejecta of order ${sim}0.01M_odot$ also originate from the tidal disruption. They are neutron rich and expand from the orbital plane with a crescent-like geometry. Consequently, bright, red and temporally extended kilonova emission is predicted from these mergers. Our results show that prompt black hole mergers can power bright electromagnetic counterparts for high-mass-ratio binaries, and that the binary mass ratio can be in principle constrained from multimessenger observations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا