Do you want to publish a course? Click here

Renormalization of Electromagnetic Quantities in Small Josephson Junctions

49   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

This doctorate thesis focuses on the effects of the electromagnetic environment on applied electromagnetic fields in single small junctions as well as arrays. We apply radio-frequency (RF) microwaves in the sub-gigahertz frequency range on a one-dimensional array of small Josephson junctions exhibiting distinct Coulomb blockade characteristics. We observed a gradual lifting of Coulomb blockade with increase in the microwave power which we interpret is due to photon-assisted tunneling of Cooper pairs in the classical (multi-photon absorption) regime. We observe that, due to its high sensitivity to microwave power, the array is well-suited for in situ microwave detection applications in low temperature environments. A detailed analysis of the characteristics in the classical (multi-photon absorption) limit reveals that the microwave amplitude is rescaled (renormalized), which we attribute to the difference in dc and ac voltage response of the array. We proceed to rigorously consider the origin of the aforementioned renormalization effect by considering the effect of the electromagnetic environment of the Josephson junction on applied oscillating voltages. We theoretically demonstrate that its effect is simply to renormalize the amplitude of oscillation in a predictable manner traced to the physics of wave function renormalization (Lehmann weights) consistent with circuit-QED. We also introduce Einsteins A and B coefficients for small Josephson junctions, in a bid to relate the renormalization effect to the modification of photon absorption and emission amplitudes. Such renormalization implies that the sensitivity of the single junction and the array to oscillating electromagnetic fields (e.g. microwaves) is modulated and depends on the environmental impedance. The renormalization effect can be exploited to configure `opaque, `translucent or `transparent quantum circuits to microwaves.



rate research

Read More

Josephson junctions based on three-dimensional topological insulators offer intriguing possibilities to realize unconventional $p$-wave pairing and Majorana modes. Here, we provide a detailed study of the effect of a uniform magnetization in the normal region: We show how the interplay between the spin-momentum locking of the topological insulator and an in-plane magnetization parallel to the direction of phase bias leads to an asymmetry of the Andreev spectrum with respect to transverse momenta. If sufficiently large, this asymmetry induces a transition from a regime of gapless, counterpropagating Majorana modes to a regime with unprotected modes that are unidirectional at small transverse momenta. Intriguingly, the magnetization-induced asymmetry of the Andreev spectrum also gives rise to a Josephson Hall effect, that is, the appearance of a transverse Josephson current. The amplitude and current phase relation of the Josephson Hall current are studied in detail. In particular, we show how magnetic control and gating of the normal region can enable sizable Josephson Hall currents compared to the longitudinal Josephson current. Finally, we also propose in-plane magnetic fields as an alternative to the magnetization in the normal region and discuss how the planar Josephson Hall effect could be observed in experiments.
The standard theory of dynamical Coulomb blockade [$P(E)$ theory] in ultra-small tunnel junctions has been formulated on the basis of phase-phase correlations by several authors. It was recently extended by several experimental and theoretical works to account for novel features such as electromagnetic environment-based renormalization effects. Despite this progress, aspects of the theory remain elusive especially in the case of linear arrays. Here, we apply path integral formalism to re-derive the Cooper-pair current and the BCS quasi-particle current in single small Josephson junctions and extend it to include long Josephson junction arrays as effective single junctions. We consider renormalization effects of applied oscillating voltages due to the impedance environment of a single junction as well as its implication to the array. As is the case in the single junction, we find that the amplitude of applied oscillating electromagnetic fields is renormalized by the same complex-valued weight $Xi(omega) = |Xi(omega)|exp ieta(omega)$ that rescales the environmental impedance in the $P(E)$ function. This weight acts as a linear response function for applied oscillating electromagnetic fields driving the quantum circuit, leading to a mass gap in the thermal spectrum of the electromagnetic field. The mass gap can be modeled as a pair of exotic `particle excitation with quantum statistics determined by the argument $eta(omega)$. In the case of the array, this pair corresponds to a bosonic charge soliton/anti-soliton pair injected into the array by the electromagnetic field. Possible application of these results is in dynamical Coulomb blockade experiments where long arrays are used as electromagnetic power detectors.
We study the spectrum of Andreev bound states and Josephson currents across a junction of $N$ superconducting wires which may have $s$- or $p$-wave pairing symmetries and develop a scattering matrix based formalism which allows us to address transport across such junctions. For $N ge 3$, it is well known that Berry curvature terms contribute to the Josephson currents; we chart out situations where such terms can have relatively large effects. For a system of three $s$- or three $p$-wave superconductors, we provide analytic expressions for the Andreev bound state energies and study the Josephson currents in response to a constant voltage applied across one of the wires; we find that the integrated transconductance at zero temperature is quantized to integer multiples of $4e^2/h$, where $e$ is the electron charge and $h = 2pi hbar$ is Plancks constant. For a sinusoidal current with frequency $omega$ applied across one of the wires in the junction, we find that Shapiro plateaus appear in the time-averaged voltage $langle V_1 rangle$ across that wire for any rational fractional multiple (in contrast to only integer multiples in junctions of two wires) of $2e langle V_1 rangle/(hbar omega)$. We also use our formalism to study junctions of two $p$- and one $s$-wave wires. We find that the corresponding Andreev bound state energies depend on the spin of the Bogoliubov quasiparticles; this produces a net magnetic moment in such junctions. The time variation of these magnetic moments may be controlled by an external applied voltage across the junction. We discuss experiments which may test our theory.
We present the results of theoretical study of Current-Phase Relations (CPR) in Josephson junctions of SIsFS type, where S is a bulk superconductor and IsF is a complex weak link consisting of a superconducting film s, a metallic ferromagnet F and an insulating barrier I. We calculate the relationship between Josephson current and phase difference. At temperatures close to critical, calculations are performed analytically in the frame of the Ginsburg-Landau equations. At low temperatures numerical method is developed to solve selfconsistently the Usadel equations in the structure. We demonstrate that SIsFS junctions have several distinct regimes of supercurrent transport and we examine spatial distributions of the pair potential across the structure in different regimes. We study the crossover between these regimes which is caused by shifting the location of a weak link from the tunnel barrier I to the F-layer. We show that strong deviations of the CPR from sinusoidal shape occur even in a vicinity of Tc, and these deviations are strongest in the crossover regime. We demonstrate the existence of temperature-induced crossover between 0 and pi states in the contact and show that smoothness of this transition strongly depends on the CPR shape.
We report experiments on micron-scale normal metal loop connected by superconducting wires, where the sample geometry enables full modulation of the thermal activation barrier with applied magnetic flux, resembling a symmetric quantum interference device. We find that except a constant factor of five, the modulation of the barrier can be well fitted by the Ambegaokar-Halperin model for a resistively shunted junction, extended here to a proximity junction with flux-tunable coupling energy estimated using quasiclassical theory. This observation sheds light on the understanding of effect of thermal fluctuation in proximity junctions, while may also lead to an unprecedented level of control in quantum interference devices.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا