Do you want to publish a course? Click here

Backdoor Attack and Defense for Deep Regression

114   0   0.0 ( 0 )
 Added by George Kesidis
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We demonstrate a backdoor attack on a deep neural network used for regression. The backdoor attack is localized based on training-set data poisoning wherein the mislabeled samples are surrounded by correctly labeled ones. We demonstrate how such localization is necessary for attack success. We also study the performance of a backdoor defense using gradient-based discovery of local error maximizers. Local error maximizers which are associated with significant (interpolation) error, and are proximal to many training samples, are suspicious. This method is also used to accurately train for deep regression in the first place by active (deep) learning leveraging an oracle capable of providing real-valued supervision (a regression target) for samples. Such oracles, including traditional numerical solvers of PDEs or SDEs using finite difference or Monte Carlo approximations, are far more computationally costly compared to deep regression.



rate research

Read More

Graph deep learning models, such as graph convolutional networks (GCN) achieve remarkable performance for tasks on graph data. Similar to other types of deep models, graph deep learning models often suffer from adversarial attacks. However, compared with non-graph data, the discrete features, graph connections and different definitions of imperceptible perturbations bring unique challenges and opportunities for the adversarial attacks and defenses for graph data. In this paper, we propose both attack and defense techniques. For attack, we show that the discreteness problem could easily be resolved by introducing integrated gradients which could accurately reflect the effect of perturbing certain features or edges while still benefiting from the parallel computations. For defense, we observe that the adversarially manipulated graph for the targeted attack differs from normal graphs statistically. Based on this observation, we propose a defense approach which inspects the graph and recovers the potential adversarial perturbations. Our experiments on a number of datasets show the effectiveness of the proposed methods.
Adversarially robust machine learning has received much recent attention. However, prior attacks and defenses for non-parametric classifiers have been developed in an ad-hoc or classifier-specific basis. In this work, we take a holistic look at adversarial examples for non-parametric classifiers, including nearest neighbors, decision trees, and random forests. We provide a general defense method, adversarial pruning, that works by preprocessing the dataset to become well-separated. To test our defense, we provide a novel attack that applies to a wide range of non-parametric classifiers. Theoretically, we derive an optimally robust classifier, which is analogous to the Bayes Optimal. We show that adversarial pruning can be viewed as a finite sample approximation to this optimal classifier. We empirically show that our defense and attack are either better than or competitive with prior work on non-parametric classifiers. Overall, our results provide a strong and broadly-applicable baseline for future work on robust non-parametrics. Code available at https://github.com/yangarbiter/adversarial-nonparametrics/ .
236 - Kaidi Xu , Hongge Chen , Sijia Liu 2019
Graph neural networks (GNNs) which apply the deep neural networks to graph data have achieved significant performance for the task of semi-supervised node classification. However, only few work has addressed the adversarial robustness of GNNs. In this paper, we first present a novel gradient-based attack method that facilitates the difficulty of tackling discrete graph data. When comparing to current adversarial attacks on GNNs, the results show that by only perturbing a small number of edge perturbations, including addition and deletion, our optimization-based attack can lead to a noticeable decrease in classification performance. Moreover, leveraging our gradient-based attack, we propose the first optimization-based adversarial training for GNNs. Our method yields higher robustness against both different gradient based and greedy attack methods without sacrificing classification accuracy on original graph.
We study the realistic potential of conducting backdoor attack against deep neural networks (DNNs) during deployment stage. Specifically, our goal is to design a deployment-stage backdoor attack algorithm that is both threatening and realistically implementable. To this end, we propose Subnet Replacement Attack (SRA), which is capable of embedding backdoor into DNNs by directly modifying a limited number of model parameters. Considering the realistic practicability, we abandon the strong white-box assumption widely adopted in existing studies, instead, our algorithm works in a gray-box setting, where architecture information of the victim model is available but the adversaries do not have any knowledge of parameter values. The key philosophy underlying our approach is -- given any neural network instance (regardless of its specific parameter values) of a certain architecture, we can always embed a backdoor into that model instance, by replacing a very narrow subnet of a benign model (without backdoor) with a malicious backdoor subnet, which is designed to be sensitive (fire large activation value) to a particular backdoor trigger pattern.
263 - Mo Zhou , Le Wang , Zhenxing Niu 2021
Deep Neural Network classifiers are vulnerable to adversarial attack, where an imperceptible perturbation could result in misclassification. However, the vulnerability of DNN-based image ranking systems remains under-explored. In this paper, we propose two attacks against deep ranking systems, i.e., Candidate Attack and Query Attack, that can raise or lower the rank of chosen candidates by adversarial perturbations. Specifically, the expected ranking order is first represented as a set of inequalities, and then a triplet-like objective function is designed to obtain the optimal perturbation. Conversely, an anti-collapse triplet defense is proposed to improve the ranking model robustness against all proposed attacks, where the model learns to prevent the positive and negative samples being pulled close to each other by adversarial attack. To comprehensively measure the empirical adversarial robustness of a ranking model with our defense, we propose an empirical robustness score, which involves a set of representative attacks against ranking models. Our adversarial ranking attacks and defenses are evaluated on MNIST, Fashion-MNIST, CUB200-2011, CARS196 and Stanford Online Products datasets. Experimental results demonstrate that a typical deep ranking system can be effectively compromised by our attacks. Nevertheless, our defense can significantly improve the ranking system robustness, and simultaneously mitigate a wide range of attacks.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا