No Arabic abstract
Boron-based clathrate materials, typically with three-dimensional networks of B atoms, have tunable properties through substitution of guest atoms, but the tuning of B cages themselves has not yet been developed. By combining crystal structural search with the laser-heated diamond anvil cell technique, we successfully synthesized a new B-based clathrate boride, LaB8, at ~108 GPa and ~2100 K. The novel structure has a B-richest cage, with 26 B atoms encapsulating a single La atom. LaB8 demonstrates phonon-mediated superconductivity with an estimated transition temperature of 14 K at ambient pressure, mainly originating from electron-phonon coupling of B cage. This work creates a prototype platform for subsequent investigation on tunable electronic properties through the choice of captured atoms.
Here we report targeted high-pressure synthesis of two novel high-$T_C$ hydride superconductors, $P6_3/mmc$-$ThH_9$ and $Fmbar{3}m$-$ThH_{10}$, with the experimental critical temperatures ($T_C$) of 146 K and 159-161 K and upper critical magnetic fields ($mu$$H_C$) 38 and 45 Tesla at pressures 170-175 Gigapascals, respectively. Superconductivity was evidenced by the observation of zero resistance and a decrease of $T_C$ under external magnetic field up to 16 Tesla. This is one of the highest critical temperatures that has been achieved experimentally in any compounds, along with such materials as $LaH_{10}$, $H_3S$ and $HgBa_2Ca_xCu_2O_{6+z}$. Our experiments show that $fcc$-$ThH_{10}$ has stabilization pressure of 85 GPa, making this material unique among all known high-$T_C$ metal polyhydrides. Two recently predicted Th-H compounds, $I4/mmm$-$ThH_4$ (> 86 GPa) and $Cmc2_1$-$ThH_6$ (86-104 GPa), were also synthesized. Equations of state of obtained thorium polyhydrides were measured and found to perfectly agree with the theoretical calculations. New phases were examined theoretically and their electronic, phonon, and superconducting properties were calculated.
A ternary type-I Si clathrate, K8AlxSi46-x, which is a candidate functional material composed of abundant non-toxic elements, was synthesized and its transport properties were investigated at temperatures ranging from 10 to 320 K. The synthesized compound is confirmed to be the ternary type-I Si clathrate K8Al7Si39 with a lattice parameter of a = 10.442 A using neutron powder diffractometry and inductively coupled plasma optical emission spectrometry. Electrical resistivity and Hall coefficient measurements revealed that K8Al7Si39 is a metal with electrons as the dominant carriers at a density of approximately 1x10^27 /m3. The value of Seebeck coefficient for K8Al7Si39 is negative and its absolute value increases with the temperature. The temperature dependence of the thermal conductivity is similar to that for a crystalline solid. The dimensionless figure of merit is approximately 0.01 at 300 K, which is comparable to that for other ternary Si clathrates.
Hydrogen-rich superhydrides are believed to be very promising high-Tc superconductors as they are expected to mimic characteristics of metallic hydrogen. Recent experiments discovered superhydrides at very high pressures, e.g. FeH5 at 130 GPa and LaH10 at 170 GPa. With the motivation of discovering new hydrogen-rich high-Tc superconductors at lowest possible pressure, here we report the prediction and experimental synthesis of cerium superhydride CeH9 below 100 GPa in the laser-heated diamond anvil cell. Ab-initio calculations were carried to evaluate the detailed chemistry of the Ce-H system and to understand the structure, stability and superconductivity of CeH9. CeH9 crystallizes in a P63/mmc clathrate structure with a substantially dense 3-dimensional hydrogen sublattice at 100 GPa. These findings shed a new light on the search for superhydrides in close proximity with atomic hydrogen within a feasible pressure range. Discovery of superhydride CeH9 provides a practical platform to further investigate and understand conventional superconductivity in hydrogen rich superhydrides.
We have synthesized a new layered oxychalcogenide La2O2Bi3AgS6. From synchrotron X-ray diffraction and Rietveld refinement, the crystal structure of La2O2Bi3AgS6 was refined using a model of the P4/nmm space group with a = 4.0644(1) {AA} and c = 19.412(1) {AA}, which is similar to the related compound LaOBiPbS3, while the interlayer bonds (M2-S1 bonds) are apparently shorter in La2O2Bi3AgS6. The tunneling electron microscopy (TEM) image confirmed the lattice constant derived from Rietveld refinement (c ~ 20 {AA}). The electrical resistivity and Seebeck coefficient suggested that the electronic states of La2O2Bi3AgS6 are more metallic than those of LaOBiS2 and LaOBiPbS3. The insertion of a rock-salt-type chalcogenide into the van der Waals gap of BiS2-based layered compounds, such as LaOBiS2, will be a useful strategy for designing new layered functional materials in the layered chalcogenide family.
Single-layer superconductors are ideal materials for fabricating superconducting nano devices. However, up to date, very few single-layer elemental superconductors have been predicted and especially no one has been successfully synthesized yet. Here, using crystal structure search techniques and ab initio calculations, we predict that a single-layer planar carbon sheet with 4- and 8-membered rings called T-graphene is a new intrinsic elemental superconductor with superconducting critical temperature (Tc) up to around 20.8 K. More importantly, we propose a synthesis route to obtain such a single-layer T-graphene, that is, a T-graphene potassium intercalation compound (C4K with P4/mmm symmetry) is firstly synthesized at high pressure (>11.5GPa) and then quenched to ambient condition; and finally, the single-layer T-graphene can be either exfoliated using the electrochemical method from the bulk C4K, or peeled off from bulk T-graphite C4, where C4 can be obtained from C4K by evaporating the K atoms. Interestingly, we find that the calculated Tc of C4K is about 30.4K at 0GPa, which sets a new record for layered carbon-based superconductors. The present findings add a new class of carbon based superconductors. In particular, once the single-layer T-graphene is synthesized, it can pave the way for fabricating superconducting devices together with other 2D materials using the layer-by-layer growth techniques.