Do you want to publish a course? Click here

Annular Khovanov-Lee homology, braids, and cobordisms

142   0   0.0 ( 0 )
 Added by J. Elisenda Grigsby
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

We prove that the Khovanov-Lee complex of an oriented link, L, in a thickened annulus, A x I, has the structure of a bifiltered complex whose filtered chain homotopy type is an invariant of the isotopy class of L in A x I. Using ideas of Ozsvath-Stipsicz-Szabo as reinterpreted by Livingston, we use this structure to define a family of annular Rasmussen invariants that yield information about annular and non-annular cobordisms. Focusing on the special case of annular links obtained as braid closures, we use the behavior of the annular Rasmussen invariants to obtain a necessary condition for braid quasipositivity and a sufficient condition for right-veeringness.



rate research

Read More

Let L be a link in a thickened annulus. We show that its sutured annular Khovanov homology carries an action of the exterior current algebra of the Lie algebra sl_2. When L is an m-framed n-cable of a knot K in the three-sphere, its sutured annular Khovanov homology carries a commuting action of the symmetric group S_n. One therefore obtains a knotted Schur-Weyl representation that agrees with classical sl_2 Schur-Weyl duality when K is the Seifert-framed unknot.
139 - J. Elisenda Grigsby , Yi Ni 2013
We show that the sutured Khovanov homology of a balanced tangle in the product sutured manifold D x I has rank 1 if and only if the tangle is isotopic to a braid.
168 - Hongjian Yang 2021
Given an annular link $L$, there is a corresponding augmented link $widetilde{L}$ in $S^3$ obtained by adding a meridian unknot component to $L$. In this paper, we construct a spectral sequence with the second page isomorphic to the annular Khovanov homology of $L$ and it converges to the reduced Khovanov homology of $widetilde{L}$. As an application, we classify all the links with the minimal rank of annular Khovanov homology. We also give a proof that annular Khovanov homology detects unlinks.
We study 4-dimensional homology cobordisms without 3-handles, showing that they interact nicely with Thurston geometries, character varieties, and instanton and Heegaard Floer homologies. Using these, we derive obstructions to such cobordisms, with topological applications.
We review the construction and context of a stable homotopy refinement of Khovanov homology.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا