Do you want to publish a course? Click here

Counting irreducible polynomials with prescribed coefficients over a finite field

142   0   0.0 ( 0 )
 Added by Simon Kuttner
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We continue our study on counting irreducible polynomials over a finite field with prescribed coefficients. We set up a general combinatorial framework using generating functions with coefficients from a group algebra which is generated by equivalent classes of polynomials with prescribed coefficients. Simplified expressions are derived for some special cases. Our results extend some earlier results.



rate research

Read More

We count the number of Coxeters friezes over a finite field. Our method uses geometric realizations of the spaces of friezes in a certain completion of the classical moduli space $mathcal{M}_{0,n}$ allowing repeated points in the configurations. Counting points in the completed moduli space over a finite field is related to the enumeration problem of counting partitions of cyclically ordered set of points into subsets containing no consecutive points. In Appendix we provide an elementary solution for this enumeration problem.
An orthomorphism over a finite field $mathbb{F}_q$ is a permutation $theta:mathbb{F}_qmapstomathbb{F}_q$ such that the map $xmapstotheta(x)-x$ is also a permutation of $mathbb{F}_q$. The degree of an orthomorphism of $mathbb{F}_q$, that is, the degree of the associated reduced permutation polynomial, is known to be at most $q-3$. We show that this upper bound is achieved for all prime powers $q otin{2, 3, 5, 8}$. We do this by finding two orthomorphisms in each field that differ on only three elements of their domain. Such orthomorphisms can be used to construct $3$-homogeneous Latin bitrades.
Given three nonnegative integers $p,q,r$ and a finite field $F$, how many Hankel matrices $left( x_{i+j}right) _{0leq ileq p, 0leq jleq q}$ over $F$ have rank $leq r$ ? This question is classical, and the answer ($q^{2r}$ when $rleqminleft{ p,qright} $) has been obtained independently by various authors using different tools (Daykin, Elkies, Garcia Armas, Ghorpade and Ram). In this note, we study a refinement of this result: We show that if we fix the first $k$ of the entries $x_{0},x_{1},ldots,x_{k-1}$ for some $kleq rleqminleft{ p,qright} $, then the number of ways to choose the remaining $p+q-k+1$ entries $x_{k},x_{k+1},ldots,x_{p+q}$ such that the resulting Hankel matrix $left( x_{i+j}right) _{0leq ileq p, 0leq jleq q}$ has rank $leq r$ is $q^{2r-k}$. This is exactly the answer that one would expect if the first $k$ entries had no effect on the rank, but of course the situation is not this simple. The refined result generalizes (and provides an alternative proof of) a result by Anzis, Chen, Gao, Kim, Li and Patrias on evaluations of Jacobi-Trudi determinants over finite fields.
141 - Chengfei Xie , Gennian Ge 2021
We study some sum-product problems over matrix rings. Firstly, for $A, B, Csubseteq M_n(mathbb{F}_q)$, we have $$ |A+BC|gtrsim q^{n^2}, $$ whenever $|A||B||C|gtrsim q^{3n^2-frac{n+1}{2}}$. Secondly, if a set $A$ in $M_n(mathbb{F}_q)$ satisfies $|A|geq C(n)q^{n^2-1}$ for some sufficiently large $C(n)$, then we have $$ max{|A+A|, |AA|}gtrsim minleft{frac{|A|^2}{q^{n^2-frac{n+1}{4}}}, q^{n^2/3}|A|^{2/3}right}. $$ These improve the results due to The and Vinh (2020), and generalize the results due to Mohammadi, Pham, and Wang (2021). We also give a new proof for a recent result due to The and Vinh (2020). Our method is based on spectral graph theory and linear algebra.
We establish an uncertainty principle for functions $f: mathbb{Z}/p rightarrow mathbb{F}_q$ with constant support (where $p mid q-1$). In particular, we show that for any constant $S > 0$, functions $f: mathbb{Z}/p rightarrow mathbb{F}_q$ for which $|text{supp}; {f}| = S$ must satisfy $|text{supp}; hat{f}| = (1 - o(1))p$. The proof relies on an application of Szemeredis theorem; the celebrated improvements by Gowers translate into slightly stronger statements permitting conclusions for functions possessing slowly growing support as a function of $p$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا