No Arabic abstract
In this paper, combining normalized nonmonotone search strategies with the Barzilai--Borwein-type step-size, a novel local minimax method (LMM), which is globally convergent, is proposed to find multiple (unstable) saddle points of nonconvex functionals in Hilbert spaces. Compared to traditional LMMs, this approach does not require the strict decrease of the objective functional value at each iterative step. Firstly, by introducing two kinds of normalized nonmonotone step-size search strategies to replace normalized monotone decrease conditions adopted in traditional LMMs, two types of nonmonotone LMMs are constructed. Their feasibility and convergence results are rigorously carried out. Secondly, in order to speed up the convergence of the nonmonotone LMMs, a globally convergent Barzilai--Borwein-type LMM (GBBLMM) is presented by explicitly constructing the Barzilai--Borwein-type step-size as a trial step-size of the normalized nonmonotone step-size search strategy in each iteration. Finally, the GBBLMM is implemented to find multiple unstable solutions of two classes of semilinear elliptic boundary value problems with variational structures: one is the semilinear elliptic equations with the homogeneous Dirichlet boundary condition and another is the linear elliptic equations with semilinear Neumann boundary conditions. Extensive numerical results indicate that our approach is very effective and speeds up the LMM significantly.
The local minimax method (LMM) proposed in [Y. Li and J. Zhou, SIAM J. Sci. Comput. 23(3), 840--865 (2001)] and [Y. Li and J. Zhou, SIAM J. Sci. Comput. 24(3), 865--885 (2002)] is an efficient method to solve nonlinear elliptic partial differential equations (PDEs) with certain variational structures for multiple solutions. The steepest descent direction and the Armijo-type step-size search rules are adopted in the above work and playing a significant role in the performance and convergence analysis of traditional LMMs. In this paper, a new algorithm framework of the LMMs is established based on general descent directions and two normalized (strong) Wolfe-Powell-type step-size search rules. The corresponding algorithm named as the normalized Wolfe-Powell-type LMM (NWP-LMM) are introduced with its feasibility and global convergence rigorously justified for general descent directions. As a special case, the global convergence of the NWP-LMM algorithm combined with the preconditioned steepest descent (PSD) directions is also verified. Consequently, it extends the framework of traditional LMMs. In addition, conjugate gradient-type (CG-type) descent directions are utilized to speed up the LMM algorithms. Finally, extensive numerical results for several semilinear elliptic PDEs are reported to profile their multiple unstable solutions and compared for different algorithms in the LMMs family to indicate the effectiveness and robustness of our algorithms. In practice, the NWP-LMM combined with the CG-type direction indeed performs much better among its LMM companions.
This work is concerned with the iterative solution of systems of quasi-static multiple-network poroelasticity (MPET) equations describing flow in elastic porous media that is permeated by single or multiple fluid networks. Here, the focus is on a three-field formulation of the problem in which the displacement field of the elastic matrix and, additionally, one velocity field and one pressure field for each of the $n ge 1$ fluid networks are the unknown physical quantities. Generalizing Biots model of consolidation, which is obtained for $n=1$, the MPET equations for $nge1$ exhibit a double saddle point structure. The proposed approach is based on a framework of augmenting and splitting this three-by-three block system in such a way that the resulting block Gauss-Seidel preconditioner defines a fully decoupled iterative scheme for the flux-, pressure-, and displacement fields. In this manner, one obtains an augmented Lagrangian Uzawa-type method, the analysis of which is the main contribution of this work. The parameter-robust uniform linear convergence of this fixed-point iteration is proved by showing that its rate of contraction is strictly less than one independent of all physical and discretization parameters. The theoretical results are confirmed by a series of numerical tests that compare the new fully decoupled scheme to the very popular partially decoupled fixed-stress split iterative method, which decouples only flow--the flux and pressure fields remain coupled in this case--from the mechanics problem. We further test the performance of the block triangular preconditioner defining the new scheme when used to accelerate the GMRES algorithm.
The discretization of Gross-Pitaevskii equations (GPE) leads to a nonlinear eigenvalue problem with eigenvector nonlinearity (NEPv). In this paper, we use two Newton-based methods to compute the positive ground state of GPE. The first method comes from the Newton-Noda iteration for saturable nonlinear Schrodinger equations proposed by Liu, which can be transferred to GPE naturally. The second method combines the idea of the Bisection method and the idea of Newton method, in which, each subproblem involving block tridiagonal linear systems can be solved easily. We give an explicit convergence and computational complexity analysis for it. Numerical experiments are provided to support the theoretical results.
In this work, we propose and investigate stable high-order collocation-type discretisations of the discontinuous Galerkin method on equidistant and scattered collocation points. We do so by incorporating the concept of discrete least squares into the discontinuous Galerkin framework. Discrete least squares approximations allow us to construct stable and high-order accurate approximations on arbitrary collocation points, while discrete least squares quadrature rules allow us their stable and exact numerical integration. Both methods are computed efficiently by using bases of discrete orthogonal polynomials. Thus, the proposed discretisation generalises known classes of discretisations of the discontinuous Galerkin method, such as the discontinuous Galerkin collocation spectral element method. We are able to prove conservation and linear $L^2$-stability of the proposed discretisations. Finally, numerical tests investigate their accuracy and demonstrate their extension to nonlinear conservation laws, systems, longtime simulations, and a variable coefficient problem in two space dimensions.
In this paper, two types of Schur complement based preconditioners are studied for twofold and block tridiagonal saddle point problems. One is based on the nested (or recursive) Schur complement, the other is based on an additive type Schur complement after permuting the original saddle point systems. We discuss different preconditioners incorporating the exact Schur complements. It is shown that some of them will lead to positive stable preconditioned systems. Our theoretical analysis is instructive for devising various exact and inexact preconditioners, as well as iterative solvers for many twofold and block tridiagonal saddle point problems.