No Arabic abstract
The rapid development of quantum computer hardware has laid the hardware foundation for the realization of QNN. Due to quantum properties, QNN shows higher storage capacity and computational efficiency compared to its classical counterparts. This article will review the development of QNN in the past six years from three parts: implementation methods, quantum circuit models, and difficulties faced. Among them, the first part, the implementation method, mainly refers to some underlying algorithms and theoretical frameworks for constructing QNN models, such as VQA. The second part introduces several quantum circuit models of QNN, including QBM, QCVNN and so on. The third part describes some of the main difficult problems currently encountered. In short, this field is still in the exploratory stage, full of magic and practical significance.
The core of quantum machine learning is to devise quantum models with good trainability and low generalization error bound than their classical counterparts to ensure better reliability and interpretability. Recent studies confirmed that quantum neural networks (QNNs) have the ability to achieve this goal on specific datasets. With this regard, it is of great importance to understand whether these advantages are still preserved on real-world tasks. Through systematic numerical experiments, we empirically observe that current QNNs fail to provide any benefit over classical learning models. Concretely, our results deliver two key messages. First, QNNs suffer from the severely limited effective model capacity, which incurs poor generalization on real-world datasets. Second, the trainability of QNNs is insensitive to regularization techniques, which sharply contrasts with the classical scenario. These empirical results force us to rethink the role of current QNNs and to design novel protocols for solving real-world problems with quantum advantages.
In this work, we address the question whether a sufficiently deep quantum neural network can approximate a target function as accurate as possible. We start with simple but typical physical situations that the target functions are physical observables, and then we extend our discussion to situations that the learning targets are not directly physical observables, but can be expressed as physical observables in an enlarged Hilbert space with multiple replicas, such as the Loshimidt echo and the Renyi entropy. The main finding is that an accurate approximation is possible only when the input wave functions in the dataset do not exhaust the entire Hilbert space that the quantum circuit acts on, and more precisely, the Hilbert space dimension of the former has to be less than half of the Hilbert space dimension of the latter. In some cases, this requirement can be satisfied automatically because of the intrinsic properties of the dataset, for instance, when the input wave function has to be symmetric between different replicas. And if this requirement cannot be satisfied by the dataset, we show that the expressivity capabilities can be restored by adding one ancillary qubit where the wave function is always fixed at input. Our studies point toward establishing a quantum neural network analogy of the universal approximation theorem that lays the foundation for expressivity of classical neural networks.
Quantum computing is an emerging paradigm with the potential to offer significant computational advantage over conventional classical computing by exploiting quantum-mechanical principles such as entanglement and superposition. It is anticipated that this computational advantage of quantum computing will help to solve many complex and computationally intractable problems in several areas such as drug design, data science, clean energy, finance, industrial chemical development, secure communications, and quantum chemistry. In recent years, tremendous progress in both quantum hardware development and quantum software/algorithm have brought quantum computing much closer to reality. Indeed, the demonstration of quantum supremacy marks a significant milestone in the Noisy Intermediate Scale Quantum (NISQ) era - the next logical step being the quantum advantage whereby quantum computers solve a real-world problem much more efficiently than classical computing. As the quantum devices are expected to steadily scale up in the next few years, quantum decoherence and qubit interconnectivity are two of the major challenges to achieve quantum advantage in the NISQ era. Quantum computing is a highly topical and fast-moving field of research with significant ongoing progress in all facets. This article presents a comprehensive review of quantum computing literature, and taxonomy of quantum computing. Further, the proposed taxonomy is used to map various related studies to identify the research gaps. A detailed overview of quantum software tools and technologies, post-quantum cryptography and quantum computer hardware development to document the current state-of-the-art in the respective areas. We finish the article by highlighting various open challenges and promising future directions for research.
Starting from the idea of Quantum Computing which is a concept that dates back to 80s, we come to the present day where we can perform calculations on real quantum computers. This sudden development of technology opens up new scenarios that quickly lead to the desire and the real possibility of integrating this technology into current software architectures. The usage of frameworks that allow computation to be performed directly on quantum hardware poses a series of challenges. This document describes a an architectural framework that addresses the problems of integrating an API exposed Quantum provider in an existing Enterprise architecture and it provides a minimum viable product (MVP) solution that really merges classical quantum computers on a basic scenario with reusable code on GitHub repository. The solution leverages a web-based frontend where user can build and select applications/use cases and simply execute it without any further complication. Every triggered run leverages on multiple backend options, that include a scheduler managing the queuing mechanism to correctly schedule jobs and final results retrieval. The proposed solution uses the up-to-date cloud native technologies (e.g. Cloud Functions, Containers, Microservices) and serves as a general framework to develop multiple applications on the same infrastructure.
In this letter we propose a general principle for how to build up a quantum neural network with high learning efficiency. Our stratagem is based on the equivalence between extracting information from input state to readout qubit and scrambling information from the readout qubit to input qubits. We characterize the quantum information scrambling by operator size growth, and by Haar random averaging over operator sizes, we propose an averaged operator size to describe the information scrambling ability for a given quantum neural network architectures, and argue this quantity is positively correlated with the learning efficiency of this architecture. As examples, we compute the averaged operator size for several different architectures, and we also consider two typical learning tasks, which are a regression task of a quantum problem and a classification task on classical images, respectively. In both cases, we find that, for the architecture with a larger averaged operator size, the loss function decreases faster or the prediction accuracy in the testing dataset increases faster as the training epoch increases, which means higher learning efficiency. Our results can be generalized to more complicated quantu