We show that in some kink-antikink (KAK) collisions sphalerons, i.e., unstable static solutions - rather than the asymptotic free soliton states - can be the source of the internal degrees of freedom (normal modes) which trigger the resonance phenomenon responsible for the fractal structure in the final state formation.
We study kink-antikink collisions in a model which interpolates smoothly between the completely integrable sine-Gordon theory, the $phi^4$ model, and a $phi^6$-like model with three degenerate vacua. We find a rich variety of behaviours, including integrability breaking, resonance windows with increasingly irregular patterns, and new types of windows near the $phi^6$-like regime. False vacua, extra kink modes and kink fragmentation play important roles in the explanations of these phenomena. Our numerical studies are backed up by detailed analytical considerations.
We study kink-antikink scattering in a one-parameter variant of the $phi^4$ theory where the model parameter controls the static intersoliton force. We interpolate between the limit of no static force (BPS limit) and the regime where the static interaction is small (non-BPS). This allows us to study the impact of the strength of the intersoliton static force on the soliton dynamics. In particular, we analyze how the transition of a bound mode through the mass threshold affects the soliton dynamics in a generic process, i.e., when a static intersoliton force shows up. We show that the thin, precisely localized spectral wall which forms in the limit of no static force, broadens in a well-defined manner when a static force is included, giving rise to what we will call a thick spectral wall. This phenomenon just requires that a discrete mode crosses into the continuum at some intermediate stage of the dynamics and, therefore, should be observable in many soliton-antisoliton collisions.
The fractal velocity pattern in symmetric kink-antikink collisions in $phi^4$ theory is shown to emerge from a dynamical model with two effective moduli, the kink-antikink separation and the internal shape mode amplitude. The shape mode usefully approximates Lorentz contractions of the kink and antikink, and the previously problematic null-vector in the shape mode amplitude at zero separation is regularized.
We investigate the role that quasinormal modes can play in kink-antikink collisions, via an example based on a perturbation of the $phi^4$ model. We find that narrow quasinormal modes can store energy during collision processes and return it back to the translational degrees of freedom. Quasinormal modes also decay, which leads to energy leakage, causing a closing of resonance windows and an increase of the critical velocity. We observe similar phenomena in an effective model, a small modification of the collective-coordinate approach to the $phi^4$ model.
In this paper the study of collisions between kinks arising in the family of MSTB models is addressed. Phenomena such as elastic kink reflection, mutual annihilation, kink-antikink transmutation and inelastic reflection are found and depend on the impact velocity.