In this paper the study of collisions between kinks arising in the family of MSTB models is addressed. Phenomena such as elastic kink reflection, mutual annihilation, kink-antikink transmutation and inelastic reflection are found and depend on the impact velocity.
We study kink-antikink scattering in a one-parameter variant of the $phi^4$ theory where the model parameter controls the static intersoliton force. We interpolate between the limit of no static force (BPS limit) and the regime where the static interaction is small (non-BPS). This allows us to study the impact of the strength of the intersoliton static force on the soliton dynamics. In particular, we analyze how the transition of a bound mode through the mass threshold affects the soliton dynamics in a generic process, i.e., when a static intersoliton force shows up. We show that the thin, precisely localized spectral wall which forms in the limit of no static force, broadens in a well-defined manner when a static force is included, giving rise to what we will call a thick spectral wall. This phenomenon just requires that a discrete mode crosses into the continuum at some intermediate stage of the dynamics and, therefore, should be observable in many soliton-antisoliton collisions.
We show that in some kink-antikink (KAK) collisions sphalerons, i.e., unstable static solutions - rather than the asymptotic free soliton states - can be the source of the internal degrees of freedom (normal modes) which trigger the resonance phenomenon responsible for the fractal structure in the final state formation.
We show that spectral walls are common phenomena in the dynamics of kinks in (1+1) dimensions. They occur in models based on two or more scalar fields with a nonempty Bogomolnyi-Prasam-Sommerfield (BPS) sector, hosting two zero modes, where they are one of the main factors governing the soliton dynamics. We also show that spectral walls appear as singularities of the dynamical vibrational moduli space.
We study the asymptotic properties of kinks in connection with the deformation procedure. We show that, upon deformation of the field-theoretic model, the asymptotics of kinks can change or remain unchanged, depending on the properties of the deforming function. The cases of both explicit and implicit kinks are considered. In addition, we modified the algorithm for obtaining the deformed kink for the case of implicit kinks.
We study kink-antikink collisions in a model which interpolates smoothly between the completely integrable sine-Gordon theory, the $phi^4$ model, and a $phi^6$-like model with three degenerate vacua. We find a rich variety of behaviours, including integrability breaking, resonance windows with increasingly irregular patterns, and new types of windows near the $phi^6$-like regime. False vacua, extra kink modes and kink fragmentation play important roles in the explanations of these phenomena. Our numerical studies are backed up by detailed analytical considerations.