Do you want to publish a course? Click here

Multimodal Detection of COVID-19 Symptoms using Deep Learning & Probability-based Weighting of Modes

123   0   0.0 ( 0 )
 Added by Meysam Effati
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The COVID-19 pandemic is one of the most challenging healthcare crises during the 21st century. As the virus continues to spread on a global scale, the majority of efforts have been on the development of vaccines and the mass immunization of the public. While the daily case numbers were following a decreasing trend, the emergent of new virus mutations and variants still pose a significant threat. As economies start recovering and societies start opening up with people going back into office buildings, schools, and malls, we still need to have the ability to detect and minimize the spread of COVID-19. Individuals with COVID-19 may show multiple symptoms such as cough, fever, and shortness of breath. Many of the existing detection techniques focus on symptoms having the same equal importance. However, it has been shown that some symptoms are more prevalent than others. In this paper, we present a multimodal method to predict COVID-19 by incorporating existing deep learning classifiers using convolutional neural networks and our novel probability-based weighting function that considers the prevalence of each symptom. The experiments were performed on an existing dataset with respect to the three considered modes of coughs, fever, and shortness of breath. The results show considerable improvements in the detection of COVID-19 using our weighting function when compared to an equal weighting function.

rate research

Read More

291 - Fei Shan , Yaozong Gao , Jun Wang 2020
CT imaging is crucial for diagnosis, assessment and staging COVID-19 infection. Follow-up scans every 3-5 days are often recommended for disease progression. It has been reported that bilateral and peripheral ground glass opacification (GGO) with or without consolidation are predominant CT findings in COVID-19 patients. However, due to lack of computerized quantification tools, only qualitative impression and rough description of infected areas are currently used in radiological reports. In this paper, a deep learning (DL)-based segmentation system is developed to automatically quantify infection regions of interest (ROIs) and their volumetric ratios w.r.t. the lung. The performance of the system was evaluated by comparing the automatically segmented infection regions with the manually-delineated ones on 300 chest CT scans of 300 COVID-19 patients. For fast manual delineation of training samples and possible manual intervention of automatic results, a human-in-the-loop (HITL) strategy has been adopted to assist radiologists for infection region segmentation, which dramatically reduced the total segmentation time to 4 minutes after 3 iterations of model updating. The average Dice simiarility coefficient showed 91.6% agreement between automatic and manual infaction segmentations, and the mean estimation error of percentage of infection (POI) was 0.3% for the whole lung. Finally, possible applications, including but not limited to analysis of follow-up CT scans and infection distributions in the lobes and segments correlated with clinical findings, were discussed.
Since the breakout of coronavirus disease (COVID-19), the computer-aided diagnosis has become a necessity to prevent the spread of the virus. Detecting COVID-19 at an early stage is essential to reduce the mortality risk of the patients. In this study, a cascaded system is proposed to segment the lung, detect, localize, and quantify COVID-19 infections from computed tomography (CT) images Furthermore, the system classifies the severity of COVID-19 as mild, moderate, severe, or critical based on the percentage of infected lungs. An extensive set of experiments were performed using state-of-the-art deep Encoder-Decoder Convolutional Neural Networks (ED-CNNs), UNet, and Feature Pyramid Network (FPN), with different backbone (encoder) structures using the variants of DenseNet and ResNet. The conducted experiments showed the best performance for lung region segmentation with Dice Similarity Coefficient (DSC) of 97.19% and Intersection over Union (IoU) of 95.10% using U-Net model with the DenseNet 161 encoder. Furthermore, the proposed system achieved an elegant performance for COVID-19 infection segmentation with a DSC of 94.13% and IoU of 91.85% using the FPN model with the DenseNet201 encoder. The achieved performance is significantly superior to previous methods for COVID-19 lesion localization. Besides, the proposed system can reliably localize infection of various shapes and sizes, especially small infection regions, which are rarely considered in recent studies. Moreover, the proposed system achieved high COVID-19 detection performance with 99.64% sensitivity and 98.72% specificity. Finally, the system was able to discriminate between different severity levels of COVID-19 infection over a dataset of 1,110 subjects with sensitivity values of 98.3%, 71.2%, 77.8%, and 100% for mild, moderate, severe, and critical infections, respectively.
SARS-CoV2, which causes coronavirus disease (COVID-19) is continuing to spread globally and has become a pandemic. People have lost their lives due to the virus and the lack of counter measures in place. Given the increasing caseload and uncertainty of spread, there is an urgent need to develop machine learning techniques to predict the spread of COVID-19. Prediction of the spread can allow counter measures and actions to be implemented to mitigate the spread of COVID-19. In this paper, we propose a deep learning technique, called Deep Sequential Prediction Model (DSPM) and machine learning based Non-parametric Regression Model (NRM) to predict the spread of COVID-19. Our proposed models were trained and tested on novel coronavirus 2019 dataset, which contains 19.53 Million confirmed cases of COVID-19. Our proposed models were evaluated by using Mean Absolute Error and compared with baseline method. Our experimental results, both quantitative and qualitative, demonstrate the superior prediction performance of the proposed models.
87 - Wenjia Zhang , Lin Gui , Yulan He 2021
As the digital news industry becomes the main channel of information dissemination, the adverse impact of fake news is explosively magnified. The credibility of a news report should not be considered in isolation. Rather, previously published news articles on the similar event could be used to assess the credibility of a news report. Inspired by this, we propose a BERT-based multimodal unreliable news detection framework, which captures both textual and visual information from unreliable articles utilising the contrastive learning strategy. The contrastive learner interacts with the unreliable news classifier to push similar credible news (or similar unreliable news) closer while moving news articles with similar content but opposite credibility labels away from each other in the multimodal embedding space. Experimental results on a COVID-19 related dataset, ReCOVery, show that our model outperforms a number of competitive baseline in unreliable news detection.
Medical diagnostic image analysis (e.g., CT scan or X-Ray) using machine learning is an efficient and accurate way to detect COVID-19 infections. However, sharing diagnostic images across medical institutions is usually not allowed due to the concern of patients privacy. This causes the issue of insufficient datasets for training the image classification model. Federated learning is an emerging privacy-preserving machine learning paradigm that produces an unbiased global model based on the received updates of local models trained by clients without exchanging clients local data. Nevertheless, the default setting of federated learning introduces huge communication cost of transferring model updates and can hardly ensure model performance when data heterogeneity of clients heavily exists. To improve communication efficiency and model performance, in this paper, we propose a novel dynamic fusion-based federated learning approach for medical diagnostic image analysis to detect COVID-19 infections. First, we design an architecture for dynamic fusion-based federated learning systems to analyse medical diagnostic images. Further, we present a dynamic fusion method to dynamically decide the participating clients according to their local model performance and schedule the model fusion-based on participating clients training time. In addition, we summarise a category of medical diagnostic image datasets for COVID-19 detection, which can be used by the machine learning community for image analysis. The evaluation results show that the proposed approach is feasible and performs better than the default setting of federated learning in terms of model performance, communication efficiency and fault tolerance.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا