Do you want to publish a course? Click here

Generation and characterization of complex vector modes with digital micromirror devices

130   0   0.0 ( 0 )
 Added by Xiaobo Hu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Complex vector light modes with a spatial variant polarization distribution have become topical of late, enabling the development of novel applications in numerous research fields. Key to this is the remarkable similarities they hold with quantum entangled states, which arises from the non-separability between the spatial and polarisation degrees of freedom (DoF). As such, the demand for diversification of generation methods and characterization techniques have increased dramatically. Here we put forward a comprehensive tutorial about the use of DMDs in the generation and characterization of vector modes, providing details on the implementation of techniques that fully exploits the unsurpassed advantage of Digital Micromirrors Devices (DMDs), such as their high refresh rates and polarisation independence. We start by briefly describing the operating principles of DMD and follow with a thorough explanation of some of the methods to shape arbitrary vector modes. Finally, we describe some techniques aiming at the real-time characterization of vector beams. This tutorial highlights the value of DMDs as an alternative tool for the generation and characterization of complex vector light fields, of great relevance in a wide variety of applications.



rate research

Read More

Vector vortex beams are structured states of light that are non-separable in their polarisation and spatial mode, they are eigenmodes of free-space and many fibre systems, and have the capacity to be used as a modal basis for both classical and quantum communication. Here we outline recent progress in our understanding of these modes, from their creation to their characterization and detection. We then use these tools to study the propagation behaviour of such modes in free-space and optical fibre and show that modal cross-talk results in a decay of vector states into separable scalar modes, with a concomitant loss of information. We present a comparison between probabilistic and deterministic detection schemes showing that the former, while ubiquitous, negates the very benefit of increased dimensionality in quantum communication while reducing signal in classical communication links. This work provides a useful introduction to the field as well as presenting new findings and perspectives to advance it further.
284 - Zilong Zhang , Yuan Gao , Xin Wang 2021
A transverse mode selective laser system with gain regulation by a digital micromirror device (DMD) is presented in this letter. The gain regulation in laser medium is adjusted by the switch of the patterns loaded on DMD. Structured pump beam patterns can be obtained after the reflection of the loaded patterns on DMD, and then its defocused into a microchip laser medium by a short focal lens, so that the pump patterns can be transferred to the gain medium to regulate the gain distribution. Corresponding structured laser beams can be generated by this laser system. The laser beam pattern can be regulated easily and quickly, by switching the loaded patterns on DMD. Through this method, we show a simple and flexible laser system to generate on-demand laser beam patterns.
The wavefront measurement of a light beam is a complex task, which often requires a series of spatially resolved intensity measurements. For instance, a detector array may be used to measure the local phase gradient in the transverse plane of the unknown laser beam. In most cases the resolution of the reconstructed wavefront is determined by the resolution of the detector, which in the infrared case is severely limited. Here we employ a Digital Micro-mirror Device (DMD) and a single-pixel detector (i.e. with no spatial resolution) to demonstrate the reconstruction of unknown wavefronts with excellent resolution. Our approach exploits modal decomposition of the incoming field by the DMD, enabling wavefront measurements at 4~kHz of both visible and infrared laser beams.
A digital micromirror device (DMD) is an amplitude-type spatial light modulator. However, a complex-amplitude light modulation with a DMD can be achieved using the superpixel scheme. In the superpixel scheme, we notice that multiple different DMD local block patterns may correspond to the same complex superpixel value. Based on this inherent encoding redundancy, a large amount of external data can be embedded into the DMD pattern without extra cost. Meanwhile, the original complex light field information carried by the DMD pattern is fully preserved. This proposed scheme is favorable for applications such as secure information transmission and copyright protection.
The astronomical community continues to be interested in suitable programmable slit masks for use in multi-object spectrometers (MOSs) on space missions. There have been ground-based MOS utilizing digital micromirror devices (DMDs) and they have proven to be highly accurate and reliable instruments. This paper summarizes the results of a continuing study to investigate the performance of DMDs under conditions associated with space deployment. This includes the response of DMDs to radiation, to the vibration and mechanical shock loads associated with launch, and the operability of DMD under cryogenic temperatures. The optical contrast ratio and a study of the long-term reflectance of a bare device have also been investigated. The results of the radiation testing demonstrate that DMDs in orbit would experience negligible heavy-ion induced single event upset (SEU) rate burden, we predict SEU rate of 5.6 micromirrors per 24 hours. Vibration and mechanical shock testing was performed according to the NASA General Environmental Verification Standard (GEVS), no mirrors failed in the devices tested. The results of low temperature testing suggest that DMDs are not affected by the thermal load and operate smoothly at temperatures at least as low as 78 K. The reflectivity of a bare DMD did not measurably change even after being exposed to ambient conditions over a period of 13 months. The measured contrast ratio (on state vs off state of the DMD micromirrors) was greater than 6000/:1 when illuminated with an f/4 optical beam. Overall, DMDs are extremely robust and promise to provide a reliable alternative to micro shutter arrays (MSA) to be used in space as remotely programmable slit masks for MOS design.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا