Do you want to publish a course? Click here

Ground-Assisted Federated Learning in LEO Satellite Constellations

62   0   0.0 ( 0 )
 Added by Bho Matthiesen
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In Low Earth Orbit (LEO) mega constellations, there are relevant use cases, such as inference based on satellite imaging, in which a large number of satellites collaboratively train a machine learning model without sharing their local data sets. To address this problem, we propose a new set of algorithms based of Federated learning (FL). Our approach differs substantially from the standard FL algorithms, as it takes into account the predictable connectivity patterns that are immanent to the LEO constellations. Extensive numerical evaluations highlight the fast convergence speed and excellent asymptotic test accuracy of the proposed method. In particular, the achieved test accuracy is within 96% to 99.6% of the centralized solution and the proposed algorithm has less hyperparameters to tune than state-of-the-art asynchronous FL methods.



rate research

Read More

The rapid development of communication technologies in the past decades has provided immense vertical opportunities for individuals and enterprises. However, conventional terrestrial cellular networks have unfortunately neglected the huge geographical digital divide, since high bandwidth wireless coverage is concentrated to urban areas. To meet the goal of ``connecting the unconnected, integrating low Earth orbit (LEO) satellites with the terrestrial cellular networks has been widely considered as a promising solution. In this article, we first introduce the development roadmap of LEO satellite constellations (SatCons), including early attempts in LEO satellites with the emerging LEO constellations. Further, we discuss the unique opportunities of employing LEO SatCons for the delivery of integrating 5G networks. Specifically, we present their key performance indicators, which offer important guidelines for the design of associated enabling techniques, and then discuss the potential impact of integrating LEO SatCons with typical 5G use cases, where we engrave our vision of various vertical domains reshaped by LEO SatCons. Technical challenges are finally provided to specify future research directions.
Dense constellations of Low Earth Orbit (LEO) small satellites are envisioned to make extensive use of the inter-satellite link (ISL). Within the same orbital plane, the inter-satellite distances are preserved and the links are rather stable. In contrast, the relative motion between planes makes the inter-plane ISL challenging. In a dense set-up, each spacecraft has several satellites in its coverage volume, but the time duration of each of these links is small and the maximum number of active connections is limited by the hardware. We analyze the matching problem of connecting satellites using the inter-plane ISL for unicast transmissions. We present and evaluate the performance of two solutions to the matching problem with any number of orbital planes and up to two transceivers: a heuristic solution with the aim of minimizing the total cost; and a Markovian solution to maintain the on-going connections as long as possible. The Markovian algorithm reduces the time needed to solve the matching up to 1000x and 10x with respect to the optimal solution and to the heuristic solution, respectively, without compromising the total cost. Our model includes power adaptation and optimizes the network energy consumption as the exemplary cost in the evaluations, but any other QoS-oriented KPI can be used instead.
Due to air quality significantly affects human health, it is becoming increasingly important to accurately and timely predict the Air Quality Index (AQI). To this end, this paper proposes a new federated learning-based aerial-ground air quality sensing framework for fine-grained 3D air quality monitoring and forecasting. Specifically, in the air, this framework leverages a light-weight Dense-MobileNet model to achieve energy-efficient end-to-end learning from haze features of haze images taken by Unmanned Aerial Vehicles (UAVs) for predicting AQI scale distribution. Furthermore, the Federated Learning Framework not only allows various organizations or institutions to collaboratively learn a well-trained global model to monitor AQI without compromising privacy, but also expands the scope of UAV swarms monitoring. For ground sensing systems, we propose a Graph Convolutional neural network-based Long Short-Term Memory (GC-LSTM) model to achieve accurate, real-time and future AQI inference. The GC-LSTM model utilizes the topological structure of the ground monitoring station to capture the spatio-temporal correlation of historical observation data, which helps the aerial-ground sensing system to achieve accurate AQI inference. Through extensive case studies on a real-world dataset, numerical results show that the proposed framework can achieve accurate and energy-efficient AQI sensing without compromising the privacy of raw data.
Federated learning (FL) has recently emerged as a promising technology to enable artificial intelligence (AI) at the network edge, where distributed mobile devices collaboratively train a shared AI model under the coordination of an edge server. To significantly improve the communication efficiency of FL, over-the-air computation allows a large number of mobile devices to concurrently upload their local models by exploiting the superposition property of wireless multi-access channels. Due to wireless channel fading, the model aggregation error at the edge server is dominated by the weakest channel among all devices, causing severe straggler issues. In this paper, we propose a relay-assisted cooperative FL scheme to effectively address the straggler issue. In particular, we deploy multiple half-duplex relays to cooperatively assist the devices in uploading the local model updates to the edge server. The nature of the over-the-air computation poses system objectives and constraints that are distinct from those in traditional relay communication systems. Moreover, the strong coupling between the design variables renders the optimization of such a system challenging. To tackle the issue, we propose an alternating-optimization-based algorithm to optimize the transceiver and relay operation with low complexity. Then, we analyze the model aggregation error in a single-relay case and show that our relay-assisted scheme achieves a smaller error than the one without relays provided that the relay transmit power and the relay channel gains are sufficiently large. The analysis provides critical insights on relay deployment in the implementation of cooperative FL. Extensive numerical results show that our design achieves faster convergence compared with state-of-the-art schemes.
Low Earth orbit (LEO) satellite constellations rely on inter-satellite links (ISLs) to provide global connectivity. However, one significant challenge is to establish and maintain inter-plane ISLs, which support communication between different orbital planes. This is due to the fast movement of the infrastructure and to the limited computation and communication capabilities on the satellites. In this paper, we make use of antenna arrays with either Butler matrix beam switching networks or digital beam steering to establish the inter-plane ISLs in a LEO satellite constellation. Furthermore, we present a greedy matching algorithm to establish inter-plane ISLs with the objective of maximizing the sum of rates. This is achieved by sequentially selecting the pairs, switching or pointing the beams and, finally, setting the data rates. Our results show that, by selecting an update period of 30 seconds for the matching, reliable communication can be achieved throughout the constellation, where the impact of interference in the rates is less than 0.7 % when compared to orthogonal links, even for relatively small antenna arrays. Furthermore, doubling the number of antenna elements increases the rates by around one order of magnitude.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا