Do you want to publish a course? Click here

Host Galaxy Line Diagnostics for the Candidate Tidal Disruption Events XMMSL1 J111527.3+180638 and PTF09axc

59   0   0.0 ( 0 )
 Added by Anne Inkenhaag
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present results of our analysis of spectra of the host galaxies of the candidate Tidal Disruption Events (TDEs) XMMSL1 J111527.3+180638 and PTF09axc to determine the nature of these transients. We subtract the starlight component from the host galaxy spectra to determine the origin of the nuclear emission lines. Using a Baldwin-Phillips-Terlevich (BPT) diagram we conclude that the host galaxy of XMMSL1 J111527.3+180638 is classified as a Seyfert galaxy, suggesting this transient is likely to be caused by (extreme) variability in the active galactic nucleus. We find that the host of PTF09axc falls in the star-forming region of the BPT-diagram, implying that the transient is a strong TDE candidate. For both galaxies we find a WISE-colour difference of $W1-W2<0.8$, which means there is no indication of a dusty torus and therefore an active galactic nucleus, seemingly contradicting our BPT finding for the host of XMMSL1 J111527.3+180638. We discuss possible reasons for the discrepant results obtained through the two methods.



rate research

Read More

206 - K. Decker French 2020
Recent studies of Tidal Disruption Events (TDEs) have revealed unexpected correlations between the TDE rate and the large-scale properties of the host galaxies. In this review, we present the host galaxy properties of all TDE candidates known to date and quantify their distributions. We consider throughout the differences between observationally-identified types of TDEs and differences from spectroscopic control samples of galaxies. We focus here on the black hole and stellar masses of TDE host galaxies, their star formation histories and stellar populations, the concentration and morphology of the optical light, the presence of AGN activity, and the extra-galactic environment of the TDE hosts. We summarize the state of several possible explanations for the links between the TDE rate and host galaxy type. We present estimates of the TDE rate for different host galaxy types and quantify the degree to which rate enhancement in some types results in rate suppression in others. We discuss the possibilities for using TDE host galaxies to assist in identifying TDEs in upcoming large transient surveys and possibilities for TDE observations to be used to study their host galaxies.
We present radio observations of the tidal disruption event candidate (TDE) XMMSL1 J0740$-$85 spanning 592 to 875 d post X-ray discovery. We detect radio emission that fades from an initial peak flux density at 1.6 GHz of $1.19pm 0.06$ mJy to $0.65pm 0.06$ mJy suggesting an association with the TDE. This makes XMMSL1 J0740$-$85 at $d=75$ Mpc the nearest TDE with detected radio emission to date and only the fifth TDE with radio emission overall. The observed radio luminosity rules out a powerful relativistic jet like that seen in the relativistic TDE Swift J1644+57. Instead we infer from an equipartition analysis that the radio emission most likely arises from a non-relativistic outflow similar to that seen in the nearby TDE ASASSN-14li, with a velocity of about $10^4$ km s$^{-1}$ and a kinetic energy of about $10^{48}$ erg, expanding into a medium with a density of about $10^2$ cm$^{-3}$. Alternatively, the radio emission could arise from a weak initially-relativistic but decelerated jet with an energy of $sim 2times 10^{50}$ erg, or (for an extreme disruption geometry) from the unbound debris. The radio data for XMMSL1 J0740$-$85 continues to support the previous suggestion of a bimodal distribution of common non-relativistic isotropic outflows and rare relativistic jets in TDEs (in analogy with the relation between Type Ib/c supernovae and long-duration gamma-ray bursts). The radio data also provide a new measurement of the circumnuclear density on a sub-parsec scale around an extragalactic supermassive black hole.
102 - Kimitake Hayasaki 2021
Tidal disruption events are an excellent probe for supermassive black holes in distant inactive galaxies because they show bright multi-wavelength flares lasting several months to years. AT2019dsg presents the first potential association with neutrino emission from such an explosive event.
Recent claimed detections of tidal disruption events (TDEs) in multi-wavelength data have opened potential new windows into the evolution and properties of otherwise dormant supermassive black holes (SMBHs) in the centres of galaxies. At present, there are several dozen TDE candidates, which share some properties and differ in others. The range in properties is broad enough to overlap other transient types, such as active galactic nuclei (AGN) and supernovae (SNe), which can make TDE classification ambiguous. A further complication is that TDE signatures have not been uniformly observed to similar sensitivities or even targeted across all candidates. This chapter reviews those events that are unusual relative to other TDEs, including the possibility of TDEs in pre-existing AGN, and summarises those characteristics thought to best distinguish TDEs from continuously accreting AGN, strongly flaring AGN, SNe, and Gamma-Ray Bursts (GRBs), as well as other potential impostors like stellar collisions, micro-TDEs, and circumbinary accretion flows. We conclude that multiple observables should be used to classify any one event as a TDE. We also consider the TDE candidate population as a whole, which, for certain host galaxy or SMBH characteristics, is distinguishable statistically from non-TDEs, suggesting that at least some TDE candidates do in fact arise from SMBH-disrupted stars.
We study the properties of tidal disruption event (TDE) host galaxies in the context of a catalog of ~500,000 galaxies from the Sloan Digital Sky Survey. We explore whether selection effects can account for the overrepresentation of TDEs in E+A/post-starburst galaxies by creating matched galaxy samples. Accounting for possible selection effects due to black hole (BH) mass, redshift completeness, strong AGN presence, bulge colors, and surface brightness can reduce the apparent overrepresentation of TDEs in E+A host galaxies by a factor of ~4 (from ~$times$100-190 to ~$times$25-48), but cannot fully explain the preference. We find that TDE host galaxies have atypical photometric properties compared to similar, typical galaxies. In particular, TDE host galaxies tend to live in or near the green valley between star-forming and passive galaxies, and have bluer bulge colors ($Delta (g-r) approx 0.3$ mag), lower half-light surface brightnesses (by ~1 mag/arcsec$^2$), higher Sersic indices ($Delta n_{rm g} approx 3$), and higher bulge-to-total-light ratios ($Delta B/T approx 0.5$) than galaxies with matched BH masses. We find that TDE host galaxies appear more centrally concentrated and that all have high galaxy Sersic indices and $B/T$ fractions---on average in the top 10% of galaxies of the same BH mass---suggesting a higher nuclear stellar density. We identify a region in Sersic index and BH mass parameter space that contains ~2% of our reference catalog galaxies but $ge!60%$ of TDE host galaxies. The unique photometric properties of TDE host galaxies may be useful for selecting candidate TDEs for spectroscopic follow-up observations in large transient surveys.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا