No Arabic abstract
Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models. The typical approach is to incorporate physical domain knowledge as soft constraints on an empirical loss function and use existing machine learning methodologies to train the model. We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs. In particular, we analyze several distinct situations of widespread physical interest, including learning differential equations with convection, reaction, and diffusion operators. We provide evidence that the soft regularization in PINNs, which involves differential operators, can introduce a number of subtle problems, including making the problem ill-conditioned. Importantly, we show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINNs setup makes the loss landscape very hard to optimize. We then describe two promising solutions to address these failure modes. The first approach is to use curriculum regularization, where the PINNs loss term starts from a simple PDE regularization, and becomes progressively more complex as the NN gets trained. The second approach is to pose the problem as a sequence-to-sequence learning task, rather than learning to predict the entire space-time at once. Extensive testing shows that we can achieve up to 1-2 orders of magnitude lower error with these methods as compared to regular PINN training.
Chemical kinetics consists of the phenomenological framework for the disentanglement of reaction mechanisms, optimization of reaction performance and the rational design of chemical processes. Here, we utilize feed-forward artificial neural networks as basis functions for the construction of surrogate models to solve ordinary differential equations (ODEs) that describe microkinetic models (MKMs). We present an algebraic framework for the mathematical description and classification of reaction networks, types of elementary reaction, and chemical species. Under this framework, we demonstrate that the simultaneous training of neural nets and kinetic model parameters in a regularized multiobjective optimization setting leads to the solution of the inverse problem through the estimation of kinetic parameters from synthetic experimental data. We probe the limits at which kinetic parameters can be retrieved as a function of knowledge about the chemical system states over time, and assess the robustness of the methodology with respect to statistical noise. This surrogate approach to inverse kinetic ODEs can assist in the elucidation of reaction mechanisms based on transient data.
We introduce conditional PINNs (physics informed neural networks) for estimating the solution of classes of eigenvalue problems. The concept of PINNs is expanded to learn not only the solution of one particular differential equation but the solutions to a class of problems. We demonstrate this idea by estimating the coercive field of permanent magnets which depends on the width and strength of local defects. When the neural network incorporates the physics of magnetization reversal, training can be achieved in an unsupervised way. There is no need to generate labeled training data. The presented test cases have been rigorously studied in the past. Thus, a detailed and easy comparison with analytical solutions is made. We show that a single deep neural network can learn the solution of partial differential equations for an entire class of problems.
Stochastic differential equations (SDEs) are used to describe a wide variety of complex stochastic dynamical systems. Learning the hidden physics within SDEs is crucial for unraveling fundamental understanding of the stochastic and nonlinear behavior of these systems. We propose a flexible and scalable framework for training deep neural networks to learn constitutive equations that represent hidden physics within SDEs. The proposed stochastic physics-informed neural network framework (SPINN) relies on uncertainty propagation and moment-matching techniques along with state-of-the-art deep learning strategies. SPINN first propagates stochasticity through the known structure of the SDE (i.e., the known physics) to predict the time evolution of statistical moments of the stochastic states. SPINN learns (deep) neural network representations of the hidden physics by matching the predicted moments to those estimated from data. Recent advances in automatic differentiation and mini-batch gradient descent are leveraged to establish the unknown parameters of the neural networks. We demonstrate SPINN on three benchmark in-silico case studies and analyze the frameworks robustness and numerical stability. SPINN provides a promising new direction for systematically unraveling the hidden physics of multivariate stochastic dynamical systems with multiplicative noise.
We apply Physics-Informed Neural Networks (PINNs) for solving identification problems of nonhomogeneous materials. We focus on the problem with a background in elasticity imaging, where one seeks to identify the nonhomogeneous mechanical properties of soft tissue based on the full-field displacement measurements under quasi-static loading. In our model, we apply two independent neural networks, one for approximating the solution of the corresponding forward problem, and the other for approximating the unknown material parameter field. As a proof of concept, we validate our model on a prototypical plane strain problem for incompressible hyperelastic tissue. The results show that the PINNs are effective in accurately recovering the unknown distribution of mechanical properties. By employing two neural networks in our model, we extend the capability of material identification of PINNs to include nonhomogeneous material parameter fields, which enables more flexibility of PINNs in representing complex material properties.
While physics conveys knowledge of nature built from an interplay between observations and theory, it has been considered less importantly in deep neural networks. Especially, there are few works leveraging physics behaviors when the knowledge is given less explicitly. In this work, we propose a novel architecture called Differentiable Physics-informed Graph Networks (DPGN) to incorporate implicit physics knowledge which is given from domain experts by informing it in latent space. Using the concept of DPGN, we demonstrate that climate prediction tasks are significantly improved. Besides the experiment results, we validate the effectiveness of the proposed module and provide further applications of DPGN, such as inductive learning and multistep predictions.