No Arabic abstract
While physics conveys knowledge of nature built from an interplay between observations and theory, it has been considered less importantly in deep neural networks. Especially, there are few works leveraging physics behaviors when the knowledge is given less explicitly. In this work, we propose a novel architecture called Differentiable Physics-informed Graph Networks (DPGN) to incorporate implicit physics knowledge which is given from domain experts by informing it in latent space. Using the concept of DPGN, we demonstrate that climate prediction tasks are significantly improved. Besides the experiment results, we validate the effectiveness of the proposed module and provide further applications of DPGN, such as inductive learning and multistep predictions.
Graph neural networks (GNNs), which learn the representation of a node by aggregating its neighbors, have become an effective computational tool in downstream applications. Over-smoothing is one of the key issues which limit the performance of GNNs as the number of layers increases. It is because the stacked aggregators would make node representations converge to indistinguishable vectors. Several attempts have been made to tackle the issue by bringing linked node pairs close and unlinked pairs distinct. However, they often ignore the intrinsic community structures and would result in sub-optimal performance. The representations of nodes within the same community/class need be similar to facilitate the classification, while different classes are expected to be separated in embedding space. To bridge the gap, we introduce two over-smoothing metrics and a novel technique, i.e., differentiable group normalization (DGN). It normalizes nodes within the same group independently to increase their smoothness, and separates node distributions among different groups to significantly alleviate the over-smoothing issue. Experiments on real-world datasets demonstrate that DGN makes GNN models more robust to over-smoothing and achieves better performance with deeper GNNs.
We introduce conditional PINNs (physics informed neural networks) for estimating the solution of classes of eigenvalue problems. The concept of PINNs is expanded to learn not only the solution of one particular differential equation but the solutions to a class of problems. We demonstrate this idea by estimating the coercive field of permanent magnets which depends on the width and strength of local defects. When the neural network incorporates the physics of magnetization reversal, training can be achieved in an unsupervised way. There is no need to generate labeled training data. The presented test cases have been rigorously studied in the past. Thus, a detailed and easy comparison with analytical solutions is made. We show that a single deep neural network can learn the solution of partial differential equations for an entire class of problems.
Optimal selection of a subset of items from a given set is a hard problem that requires combinatorial optimization. In this paper, we propose a subset selection algorithm that is trainable with gradient-based methods yet achieves near-optimal performance via submodular optimization. We focus on the task of identifying a relevant set of sentences for claim verification in the context of the FEVER task. Conventional methods for this task look at sentences on their individual merit and thus do not optimize the informativeness of sentences as a set. We show that our proposed method which builds on the idea of unfolding a greedy algorithm into a computational graph allows both interpretability and gradient-based training. The proposed differentiable greedy network (DGN) outperforms discrete optimization algorithms as well as other baseline methods in terms of precision and recall.
We introduce the concept of a Graph-Informed Neural Network (GINN), a hybrid approach combining deep learning with probabilistic graphical models (PGMs) that acts as a surrogate for physics-based representations of multiscale and multiphysics systems. GINNs address the twin challenges of removing intrinsic computational bottlenecks in physics-based models and generating large data sets for estimating probability distributions of quantities of interest (QoIs) with a high degree of confidence. Both the selection of the complex physics learned by the NN and its supervised learning/prediction are informed by the PGM, which includes the formulation of structured priors for tunable control variables (CVs) to account for their mutual correlations and ensure physically sound CV and QoI distributions. GINNs accelerate the prediction of QoIs essential for simulation-based decision-making where generating sufficient sample data using physics-based models alone is often prohibitively expensive. Using a real-world application grounded in supercapacitor-based energy storage, we describe the construction of GINNs from a Bayesian network-embedded homogenized model for supercapacitor dynamics, and demonstrate their ability to produce kernel density estimates of relevant non-Gaussian, skewed QoIs with tight confidence intervals.
Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models. The typical approach is to incorporate physical domain knowledge as soft constraints on an empirical loss function and use existing machine learning methodologies to train the model. We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs. In particular, we analyze several distinct situations of widespread physical interest, including learning differential equations with convection, reaction, and diffusion operators. We provide evidence that the soft regularization in PINNs, which involves differential operators, can introduce a number of subtle problems, including making the problem ill-conditioned. Importantly, we show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINNs setup makes the loss landscape very hard to optimize. We then describe two promising solutions to address these failure modes. The first approach is to use curriculum regularization, where the PINNs loss term starts from a simple PDE regularization, and becomes progressively more complex as the NN gets trained. The second approach is to pose the problem as a sequence-to-sequence learning task, rather than learning to predict the entire space-time at once. Extensive testing shows that we can achieve up to 1-2 orders of magnitude lower error with these methods as compared to regular PINN training.