No Arabic abstract
Plasmons are usually described in terms of macroscopic quantities such as electric fields and currents. However as fundamental excitations of metals they are also quantum objects with internal structure. We demonstrate that this can induce an intrinsic dipole moment which is tied to the quantum geometry of the Hilbert space of plasmon states. This {it quantum geometric dipole} offers a unique handle for manipulation of plasmon dynamics, via density modulations and electric fields. As a concrete example we demonstrate that scattering of plasmons with non-vanishing quantum geometric dipole from impurities is non-reciprocal, skewing in different directions in a valley-dependent fashion. This internal structure can be used to control plasmon trajectories in two dimensional materials.
Graphene has raised high expectations as a low-loss plasmonic material in which the plasmon properties can be controlled via electrostatic doping. Here, we analyze realistic configurations, which produce inhomogeneous doping, in contrast to what has been so far assumed in the study of plasmons in nanostructured graphene. Specifically, we investigate backgated ribbons, co-planar ribbon pairs placed at opposite potentials, and individual ribbons subject to a uniform electric field. Plasmons in backgated ribbons and ribbon pairs are similar to those of uniformly doped ribbons, provided the Fermi energy is appropriately scaled to compensate for finite-size effects such as the divergence of the carrier density at the edges. In contrast, the plasmons of a ribbon exposed to a uniform field exhibit distinct dispersion and spatial profiles that considerably differ from uniformly doped ribbons. Our results provide a road map to understand graphene plasmons under realistic electrostatic doping conditions.
We theoretically demonstrate that dc electron flow across the junction of two-dimensional electron systems leads to excitation of edge magnetoplasmons. The threshold current for such plasmon excitation does not depend on contact effects and approaches zero for ballistic electron systems, which makes a strong distinction from the well-known Dyakonov-Shur and Cerenkov-type instabilities. We estimate the competing plasmon energy gain from dc current and loss due to electron scattering. We show that plasmon self excitation is feasible in GaAs-based heterostructures at $Tlesssim 200$ K and magnetic fields $B lesssim 10$ T.
Recently, it was demonstrated that a graphene/dielectric/metal configuration can support acoustic plasmons, which exhibit extreme plasmon confinement an order of magnitude higher than that of conventional graphene plasmons. Here, we investigate acoustic plasmons supported in a monolayer and multilayers of black phosphorus (BP) placed just a few nanometers above a conducting plate. In the presence of a conducting plate, the acoustic plasmon dispersion for the armchair direction is found to exhibit the characteristic linear scaling in the mid- and far-infrared regime while it largely deviates from that in the long wavelength limit and near-infrared regime. For the zigzag direction, such scaling behavior is not evident due to relatively tighter plasmon confinement. Further, we demonstrate a new design for an acoustic plasmon resonator that exhibits higher plasmon confinement and resonance efficiency than BP ribbon resonators in the mid-infrared and longer wavelength regime. Theoretical framework and new resonator design studied here provide a practical route toward the experimental verification of the acoustic plasmons in BP and open up the possibility to develop novel plasmonic and optoelectronic devices that can leverage its strong in-plane anisotropy and thickness-dependent band gap.
We present a quantum model to calculate the dipole-dipole coupling between electronic excitations in the conduction band of semiconductor quantum wells. We demonstrate that the coupling depends on a characteristic length, related to the overlap between microscopic current densities associated with each electronic excitation. As a result of the coupling, a macroscopic polarization is established in the quantum wells, corresponding to one or few bright collective modes of the electron gas. Our model is applied to derive a sum rule and to investigate the interplay between tunnel coupling and Coulomb interaction in the absorption spectrum of a dense electron gas.
We report on infrared (IR) nanoscopy of 2D plasmon excitations of Dirac fermions in graphene. This is achieved by confining mid-IR radiation at the apex of a nanoscale tip: an approach yielding two orders of magnitude increase in the value of in-plane component of incident wavevector q compared to free space propagation. At these high wavevectors, the Dirac plasmon is found to dramatically enhance the near-field interaction with mid-IR surface phonons of SiO2 substrate. Our data augmented by detailed modeling establish graphene as a new medium supporting plasmonic effects that can be controlled by gate voltage.