No Arabic abstract
Photonic topological states have revolutionized our understanding on the propagation and scattering of light. Recent discovery of higher-order photonic topological insulators opens an emergent horizon for zero-dimensional topological corner states. However, the previous realizations of higher-order photonic topological insulators suffer from either a limited operational frequency range due to the lumped components involved or a bulky structure with a large footprint, which are unfavorable for future integrated photonics. To overcome these limitations, we hereby experimentally demonstrate a planar surface-wave photonic crystal realization of two-dimensional higher-order topological insulators. The surface-wave photonic crystals exhibit a very large bulk bandgap (a bandwidth of 28%) due to multiple Bragg scatterings and host one-dimensional gapped edge states described by massive Dirac equations. The topology of those higher-dimensional photonic bands leads to the emergence of zero-dimensional corner states, which provide a route toward robust cavity modes for scalable, integrated photonic chips and an interface for the control of light-matter interaction.
Quadrupole topological phases, exhibiting protected boundary states that are themselves topological insulators of lower dimensions, have recently been of great interest. Extensions of these ideas from current tight binding models to continuum theories for realistic materials require the identification of quantized invariants describing the bulk quadrupole order. Here we identify the analog of quadrupole order in Maxwells equations for a photonic crystal (PhC) and identify quadrupole topological photonic crystals formed through a band inversion process. Unlike prior studies relying on threaded flux, our quadrupole moment is quantized purely by crystalline symmetries, which we confirm using three independent methods: analysis of symmetry eigenvalues, numerical calculations of the nested Wannier bands, and the expectation value of the quadrupole operator. Furthermore, through the bulk-edge correspondence of Wannier bands, we reveal the boundary manifestations of nontrivial quadrupole phases as quantized polarizations at edges and bound states at corners. Finally, we relate the nontrivial corner states to the emergent phenomena of quantized fractional corner charges and a filling anomaly as first predicted in electronic systems. Our work paves the way to further explore higher-order topological phases in nanophotonic systems and our method of inducing quadrupole phase transitions is also applicable to other wave systems, such as electrons, phonons and polaritons.
Topological photonic systems represent a new class of optical materials supporting boundary modes with unique properties, not found in conventional photonics. While the early research on topological photonics has focused on edge and surface modes in 2D and 3D systems, respectively, recently higher-order topological insulators (HOTIs) supporting lower-dimensional boundary states have been introduced. In this work we design and experimentally realize a photonic kagome metasurface exhibiting a Wannier-type higher-order topological phase. We demonstrate and visualize the emergence of a topological transition and opening of a Dirac cone by directly exciting the bulk modes of the HOTI metasurface via solid-state immersion spectroscopy. The open nature of the metasurface is then utilized to directly image topological boundary states. We show that, while the domain walls host 1D edge states, their bending induces 0D higher-order topological modes confined to the corners. The demonstrated metasurface hosting topological boundary modes of different dimensionality paves the way to a new generation of universal and resilient optical devices which can controllably scatter, trap and guide optical fields in a robust way.
We investigate, experimentally and theoretically, polarization rotation effects in dilute photonic crystals with transverse permittivity inhomogeneity perpendicular to the traveling direction of waves. A capsize, namely a drastic change of polarization to the perpendicular direction is observed in a one-dimensional photonic crystal in the frequency range $10div 140$ GHz. To gain more insights into the rotational mechanism, we have developed a theoretical model of dilute photonic crystal, based on Maxwells equations with a spatially dependent two dimensional inhomogeneous dielectric permittivity. We show that the polarizations rotation can be explained by an optical splitting parameter appearing naturally in Maxwells equations for magnetic or electric fields components. This parameter is an optical analogous of Rashba like spin-orbit interaction parameter present in quantum waves, introduces a correction to the band structure of the two-dimensional Bloch states, creates the dynamical phase shift between the waves propagating in the orthogonal directions and finally leads to capsizing of the initial polarization. Excellent agreement between theory and experiment is found.
Efficient numeric algorithm is the key for accurate evaluation of density of states (DOS) in band theory. Gilat-Raubenheimer (GR) method proposed in 1966 is an efficient linear extrapolation method which was limited in specific lattices. Here, using an affine transformation, we provide a new generalization of the original GR method to any Bravais lattices and show that it is superior to the tetrahedron method and the adaptive Gaussian broadening method. Finally, we apply our generalized GR (GGR) method to compute DOS of various gyroid photonic crystals of topological degeneracies.
Extensive researches have revealed that valley, a binary degree of freedom (DOF), can be an excellent candidate of information carrier. Recently, valley DOF has been introduced into photonic systems, and several valley-Hall photonic topological insulators (PTIs) have been experimentally demonstrated. However, in the previous valley-Hall PTIs, topological kink states only work at a single frequency band, which limits potential applications in multiband waveguides, filters, communications, and so on. To overcome this challenge, here we experimentally demonstrate a valley-Hall PTI, where the topological kink states exist at two separated frequency bands, in a microwave substrate-integrated circuitry. Both the simulated and experimental results demonstrate the dual-band valley-Hall topological kink states are robust against the sharp bends of the internal domain wall with negligible inter-valley scattering. Our work may pave the way for multi-channel substrate-integrated photonic devices with high efficiency and high capacity for information communications and processing.