Do you want to publish a course? Click here

MWPToolkit: An Open-Source Framework for Deep Learning-Based Math Word Problem Solvers

96   0   0.0 ( 0 )
 Added by Lei Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Developing automatic Math Word Problem (MWP) solvers has been an interest of NLP researchers since the 1960s. Over the last few years, there are a growing number of datasets and deep learning-based methods proposed for effectively solving MWPs. However, most existing methods are benchmarked soly on one or two datasets, varying in different configurations, which leads to a lack of unified, standardized, fair, and comprehensive comparison between methods. This paper presents MWPToolkit, the first open-source framework for solving MWPs. In MWPToolkit, we decompose the procedure of existing MWP solvers into multiple core components and decouple their models into highly reusable modules. We also provide a hyper-parameter search function to boost the performance. In total, we implement and compare 17 MWP solvers on 4 widely-used single equation generation benchmarks and 2 multiple equations generation benchmarks. These features enable our MWPToolkit to be suitable for researchers to reproduce advanced baseline models and develop new MWP solvers quickly. Code and documents are available at https://github.com/LYH-YF/MWPToolkit.



rate research

Read More

We present ASDiv (Academia Sinica Diverse MWP Dataset), a diverse (in terms of both language patterns and problem types) English math word problem (MWP) corpus for evaluating the capability of various MWP solvers. Existing MWP corpora for studying AI progress remain limited either in language usage patterns or in problem types. We thus present a new English MWP corpus with 2,305 MWPs that cover more text patterns and most problem types taught in elementary school. Each MWP is annotated with its problem type and grade level (for indicating the level of difficulty). Furthermore, we propose a metric to measure the lexicon usage diversity of a given MWP corpus, and demonstrate that ASDiv is more diverse than existing corpora. Experiments show that our proposed corpus reflects the true capability of MWP solvers more faithfully.
Math word problem (MWP) is a challenging and critical task in natural language processing. Many recent studies formalize MWP as a generation task and have adopted sequence-to-sequence models to transform problem descriptions to mathematical expressions. However, mathematical expressions are prone to minor mistakes while the generation objective does not explicitly handle such mistakes. To address this limitation, we devise a new ranking task for MWP and propose Generate & Rank, a multi-task framework based on a generative pre-trained language model. By joint training with generation and ranking, the model learns from its own mistakes and is able to distinguish between correct and incorrect expressions. Meanwhile, we perform tree-based disturbance specially designed for MWP and an online update to boost the ranker. We demonstrate the effectiveness of our proposed method on the benchmark and the results show that our method consistently outperforms baselines in all datasets. Particularly, in the classical Math23k, our method is 7% (78.4% $rightarrow$ 85.4%) higher than the state-of-the-art.
We study the problem of generating arithmetic math word problems (MWPs) given a math equation that specifies the mathematical computation and a context that specifies the problem scenario. Existing approaches are prone to generating MWPs that are either mathematically invalid or have unsatisfactory language quality. They also either ignore the context or require manual specification of a problem template, which compromises the diversity of the generated MWPs. In this paper, we develop a novel MWP generation approach that leverages i) pre-trained language models and a context keyword selection model to improve the language quality of the generated MWPs and ii) an equation consistency constraint for math equations to improve the mathematical validity of the generated MWPs. Extensive quantitative and qualitative experiments on three real-world MWP datasets demonstrate the superior performance of our approach compared to various baselines.
Memristive devices have shown great promise to facilitate the acceleration and improve the power efficiency of Deep Learning (DL) systems. Crossbar architectures constructed using these Resistive Random-Access Memory (RRAM) devices can be used to efficiently implement various in-memory computing operations, such as Multiply Accumulate (MAC) and unrolled-convolutions, which are used extensively in Deep Neural Networks (DNNs) and Convolutional Neural Networks (CNNs). However, memristive devices face concerns of aging and non-idealities, which limit the accuracy, reliability, and robustness of Memristive Deep Learning Systems (MDLSs), that should be considered prior to circuit-level realization. This Original Software Publication (OSP) presents MemTorch, an open-source framework for customized large-scale memristive DL simulations, with a refined focus on the co-simulation of device non-idealities. MemTorch also facilitates co-modelling of key crossbar peripheral circuitry. MemTorch adopts a modernized soft-ware engineering methodology and integrates directly with the well-known PyTorch Machine Learning (ML) library
We introduce MeSys, a meaning-based approach, for solving English math word problems (MWPs) via understanding and reasoning in this paper. It first analyzes the text, transforms both body and question parts into their corresponding logic forms, and then performs inference on them. The associated context of each quantity is represented with proposed role-tags (e.g., nsubj, verb, etc.), which provides the flexibility for annotating an extracted math quantity with its associated context information (i.e., the physical meaning of this quantity). Statistical models are proposed to select the operator and operands. A noisy dataset is designed to assess if a solver solves MWPs mainly via understanding or mechanical pattern matching. Experimental results show that our approach outperforms existing systems on both benchmark datasets and the noisy dataset, which demonstrates that the proposed approach understands the meaning of each quantity in the text more.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا